• 제목/요약/키워드: 생성형 AI 서비스

검색결과 65건 처리시간 0.021초

린 스타트업을 위한 생성형 AI 서비스 활용 심층 인터뷰 가이드라인 제안 (A suggestion of in-depth interview guidelines using generative AI services for lean startups)

  • 이수빈;정영욱
    • 문화기술의 융합
    • /
    • 제10권2호
    • /
    • pp.471-485
    • /
    • 2024
  • 본 연구는 린 스타트업 환경 내에서 생성형 AI를 활용한 심층 인터뷰의 효율적인 활용 방안을 탐구한다. 최근 기술적 진보에 따라 다양한 조직에서 생성형 AI를 활용하여 업무 생산성을 증진시키는 사례가 증가하고 있으며, 이는 린 스타트업 환경에서도 적용되고 있다. 본 연구는 린 스타트업에서 비교적 부족한 시간과 한정된 자본내에서도 실무자들이 AI를 활용하여 심층 인터뷰를 수행할 수 있도록 돕기 위해 구체적인 가이드라인과 가이드북을 개발했다. 제안된 가이드북은 실무자들이 신속하게 인터뷰를 설계하고 진행할 수 있도록 지원함으로써, 린 스타트업의 민첩하고 유연한 작업 환경을 촉진하는 것을 목표로 한다. 본 연구는 또한 ChatGPT 4, 뤼튼 등과 같은 텍스트 기반 생성형 AI 서비스를 디자인 및 인터뷰 분야에 활용하는 실무적 방법을 탐구하며, 이를 통해 학술적 논의와 실무적 적용의 기여를 하는 데에 의의가 있다.

LLM 애플리케이션 아키텍처를 활용한 생성형 AI 서비스 구현: RAG모델과 LangChain 프레임워크 기반 (Generative AI service implementation using LLM application architecture: based on RAG model and LangChain framework)

  • 정천수
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.129-164
    • /
    • 2023
  • 최근 생성형 AI 기술의 발전으로 인해 대형 언어 모델(Large Language Model, LLM)의 활용 및 도입이 확대되고 있는 상황에서 기존 연구들은 기업내부 데이터의 활용에 대한 실제 적용사례나 구현방법을 찾아보기 힘들다. 이에 따라 본 연구에서는 가장 많이 이용되고 있는 LangChain 프레임워크를 이용한 LLM 애플리케이션 아키텍처를 활용하여 생성형 AI 서비스를 구현하는 방법을 제시한다. 이를 위해 LLM의 활용을 중심으로, 정보 부족 문제를 극복하는 다양한 방법을 검토하고 구체적인 해결책을 제시하였다. 이를 위해 파인튜닝이나 직접 문서 정보를 활용하는 방법을 분석하며, 이러한 문제를 해결하기 위한 RAG 모델을 활용한 정보 저장 및 검색 방법에 대해 주요단계에 대해 자세하게 살펴본다. 특히, RAG 모델을 활용하여 정보를 벡터저장소에 저장하고 검색하기 위한 방법으로 유사문맥 추천 및 QA시스템을 활용하였다. 또한 구체적인 작동 방식과 주요한 구현 단계 및 사례를 구현소스 및 사용자 인터페이스까지 제시하여 생성형 AI 기술에 대한 이해를 높였다. 이를 통해 LLM을 활용한 기업내 서비스 구현에 적극적으로 활용할 수 있도록 하는데 의미와 가치가 있다.

Analysis of perceptions and needs of generative AI for work-related use in elementary and secondary education

  • Hye Jin Yun;Kwihoon Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.231-243
    • /
    • 2024
  • 생성형 AI 서비스의 다각화로 다양한 분야와 연령대에서 사용됨에 따라, 교육 분야에서도 활용 시도와 논의가 활발해지고 있다. 본 연구에서는 충청북도 지역 초·중등 교직원 934명 대상의 설문 조사를 통해 생성형 AI에 대한 일반적 및 업무 영역에서의 인식과 활용도, 요구 사항을 조사·분석했다. 주요 연구 결과로, 첫째, 교직원의 생성형 AI 활용 경험은 일반적 사용 대비 업무 목적 사용 경험이 적었고, 월 1회 이상의 주기적 빈도를 고려하면 훨씬 적은 비율로 나타났다. 둘째, 생성형 AI의 업무 활용 시 업무 효율 향상에 대한 기대가 가장 높은 것으로 나타났다. 셋째, 직위와 직종에 따라 생성형 AI의 활용 방안별 유용성 인식차가 두드러졌지만, 다양한 문서 처리 도움에 대한 유용성 인식 정도가 공통으로 높은 것으로 나타났다. 초·중등 교직원의 생성형 AI 업무 활용을 위해 생성형 AI 사용 관련 부작용 및 유의점에 대한 안전장치 마련과 촉진 환경 조성 등의 사항에 대한 개선이 필요하고 직위와 직종에 따라 요구 사항과 필요성이 고려되어야 할 것이다.

생성형 AI 이해 및 활용을 위한 대학 교양교과목 교육과정 개발 (Development of university liberal arts curriculum for understanding and utilizing generative AI)

  • 박지현;박종진
    • 문화기술의 융합
    • /
    • 제10권5호
    • /
    • pp.645-650
    • /
    • 2024
  • 본 논문은 챗GPT를 중심으로 생성형 AI를 활용한 대학 교양교육을 위해 지방 소재의 두 대학에서 교양교과목 교육과정을 공동으로 설계하고 개발하였다. 개발된 교육과정은 기존 연구에서 제시된 대학 챗GPT 통합 활용 수업 설계를 위한 개념적 구성요소를 고려하여 챗GPT의 기반을 이루는 언어모델과 인공지능을 이해하고 챗GPT을 포함하는 생성형 AI를 다양한 도메인에 활용하는 내용으로 개발하였다. 개발된 교육과정은 다양한 전공의 수강생을 대상으로 챗GPT의 기반인 자연어처리 언어모델과 인공지능의 개념 및 변화양상을 소개하고, 생성 AI 및 대형언어모델(LLM)인 챗GPT와 다양한 오픈소스 생성 모델을 이용하여 나만의 AI 서비스를 구현하며, 대학 교양교육에서 혁신적인 교육방법으로서, 대학간 공유협력 공동교육과정운영을 위한 사례를 제시하고자 한다.

LDA토픽 모델링을 활용한 생성형 AI 챗봇의 탐색적 연구 : 기존 AI 챗봇 서비스 품질 요인과의 비교 (An Exploratory Study of Generative AI Service Quality using LDA Topic Modeling and Comparison with Existing Dimensions)

  • 안예은;오정석
    • 서비스연구
    • /
    • 제13권4호
    • /
    • pp.191-205
    • /
    • 2023
  • 인공 지능 (AI), 특히 텍스트 생성 서비스 분야에서의 발전은 두드러지게 나타나고 있으며, AI-as-a-Service (AIaaS) 시장은 2028년까지 550억 달러에 달할 것으로 예상된다. 본 연구는 합성 텍스트 미디어 소프트웨어의 품질 요소를 탐구하였으며, 이를 위해 ChatGPT, Writesonic, Jasper, 그리고 Anyword와 같은 산업의 주요 서비스에 주목하였다. 소프트웨어 평가 플랫폼에서 수집된 4,000개 이상의 리뷰를 바탕으로, Gensim 라이브러리를 활용한 잠재 디리클레 할당 (LDA) 주제 모델링 기법을 적용하였다. 이 분석을 통해 11개의 주제가 도출되었다. 이후 이 주제들을 AICSQ 및 AISAQUAL과 같은 기존 논문에서 다루었던 AI 서비스 품질 차원과 비교 분석하였다. 리뷰에서는 가용성 및 효율성과 같은 차원이 주로 강조되었으며, 이전 연구에서 중요하게 여겨졌던 사람다움과 같은 요소는 본 연구에서 강조되지 않았다. 이러한 결과는 AI 서비스의 본질적 특성, 즉 사용자와의 직접적인 상호작용보다 의미론적 이해에 더 중점을 둔다는 특성 때문으로 해석된다. 본 연구는 단일 리뷰 원천 및 평가자들의 인구 통계의 특정성과 같은 잠재적 편향을 인정하며, 향후 연구 방향으로는 이러한 품질 차원이 사용자 만족도에 어떻게 영향을 미치는지, 그리고 개별 차원이 전체 평점에 어떻게 영향을 미치는지에 대한 깊은 분석을 제안한다.

GAN을 활용한 기상조건에 따른 하늘 이미지 생성 (Creating Sky Images according to Weather Conditions Using GAN)

  • 조규철;조강현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.293-296
    • /
    • 2024
  • 현재 생성형 AI가 활발히 연구되고 있는 가운데, 대부분의 이미지 생성 AI는 프롬프트를 기반으로 한 Text-To-Image 방식을 주로 사용하고 있다. 하지만, 프롬프트 기반의 생성 AI는 실제 서비스에 도입하기 어려운 점이 많다. 여러 이미지 중, 하늘 이미지는 메타버스 등 가상 공간에서 매우 자주 사용되는 이미지 중 하나이면서 여러 입력값에 의해 이미지가 달라진다. 이 논문에서는 GAN을 활용해 기상 조건에 적합한 하늘 이미지를 생성하는 프로그램을 설계 및 구현한다.

  • PDF

대화형 생성AI 서비스 사용자의 지속사용의도에 관한 연구: 과업-기술적합(TTF)과 신뢰를 중심으로 (A Study on User Continuance Intention of Conversational Generative AI Services: Focused on Task-Technology Fit (TTF) and Trust)

  • 안승규;안현철
    • 경영정보학연구
    • /
    • 제26권1호
    • /
    • pp.193-218
    • /
    • 2024
  • 본 연구는 대화형 생성AI 서비스의 기술적 특성과 사용자의 과업 특성을 요인을 발굴하고 과업기술적합이 사용자 만족과 지속 사용에 미치는 영향을 분석하였다. 또한, 생성AI가 제공하는 정보에 대한 사용자의 믿음 정도를 나타내는 신뢰 변수가 과업-기술적합, 사용자 만족, 지속 사용 의도에 미치는 영향을 확인하였다. 본 연구에서 제안된 모형을 분석하기 위하여 연령대별 다양한 사용자를 대상으로 설문조사를 실시하였고 총 198부의 설문을 취합하여 SmartPLS 4.0을 이용해 분석을 실시하였다. 가설 검증 결과, 기술 특성 중 언어유창성과 상호작용성이, 과업특성 중 모호성이 과업-기술적 합을 매개로 사용자 만족과 지속사용의도에 유의한 영향을 미치는 것으로 확인되었다. 하지만, 기술 특성 중 창의성, 과업 특성 중 시간 유연성은 과업-기술적합에 유의한 영향을 미치지 못하였으며, 신뢰 역시 과업-기술적합과 지속사용의도에 직접적인 영향을 미치지 못하고 오직 사용자 만족에만 긍정적인 영향을 미침을 확인하였다. 이러한 본 연구의 결과는 대화형 생성AI 서비스를 개발하여 공급하려고 하는 공급기업이나 비즈니스 생산성 향상을 목적으로 생성AI 기술을 도입하려고 하는 기업들에게 유의미한 시사점을 제공해 줄 수 있을 것이다.

건국봇: 검색모델과 생성모델을 결합한 챗봇 (KU-Bot: Chatbot combining Retrieval-based model and Generative Model)

  • 이현우;민덕기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.449-452
    • /
    • 2018
  • 최근 AI 스피커를 비롯한 지능형 비서 서비스들이 빠르게 등장하고 있으며, AI 시장에서도 특히 챗봇 구축이 가장 활발하게 진행되고 있다. 건국봇은 건국대학교 학생들에게 필요한 정보를 제공하는 대화형 서비스이다. 본 논문에서는 대표적인 챗봇 구현 방법인 검색모델과 생성모델의 장단점을 분석하고, 건국봇에 적용한 사례를 소개한다. 궁극적으로, 질의문의 의도를 단어의 가중치를 고려해 추론함으로써 Unknown 추론을 강화하고 의도되지 않은 문장의 처리 관점에서 성능을 향상시키는 방법을 제안한다.

LLM 기반의 생성형 AI 응답 데이터 품질이 업무 활용 만족도에 미치는 영향에 관한 연구 (A Study of how LLM-based generative AI response data quality affects impact on job satisfaction)

  • 이승환;현지은;김광용
    • 융합보안논문지
    • /
    • 제24권3호
    • /
    • pp.117-129
    • /
    • 2024
  • 2017년 새로운 형태의 아키텍처인 트랜스포머(Transformer)가 발표되면서 언어모델에도 많은 변화가 있었다. 특히 대형 언어 모델인 LLM(Large language model)의 발전으로 검색이나 챗봇(Chatbot)과 같은 생성형 AI 서비스가 다양한 업무 영역에 활용되고 있다. 하지만 개인정보 유출과 같은 보안 이슈나 거짓 정보를 생성하는 할루시네이션(Hallucination)과 같은 신뢰성 문제가 발생하면서 이러한 서비스의 실효성에 대한 우려의 목소리도 커지고 있다. 이에 본 연구에서는 이러한 우려에도 불구하고 생성형 AI를 업무 영역에 활용하고 있는 빈도가 점점 증가하고 있는 요인에 대해서 분석하고자 하였다. 이를 위해 LLM 기반의 생성형 AI 응답 데이터 품질에 영향을 미치는 8가지 요인을 도출하고 유효 표본 195개를 대상으로 이러한 요인들이 업무 활용 만족도에 미치는 영향을 실증 분석하였다. 분석결과 전문성, 접근성, 다양성, 편리성이 지속적 사용의도에 유의한 영향을, 보안성, 안정성, 신뢰성 등이 부분적으로 유의한 영향을, 완전성이 부정적 영향을 미치는 요인으로 나타났다. 본 연구에서는 응답 데이터 품질에 대한 수요자의 인식이 업무 활용 만족도에 어떠한 영향을 미치는지 학문적으로 규명하고, 이러한 서비스에 대한 수요자 중심의 의미 있는 실무적 시사점을 제시하는데 그 목적이 있다.

생성형 AI를 활용한 1:1 맞춤형 노인 스마트폰 교육 어플리케이션 개발 (Development of 1:1 customized Smartphone Education Application for the Elderly using Generative AI)

  • 추민영;박연우;노승현;허수진;허원회
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권4호
    • /
    • pp.15-20
    • /
    • 2024
  • 지자체는 초고령사회로 인해 발생하는 정보 격차를 해소하기 위해 고령자를 대상으로 스마트폰 사용법 교육을 실시하고 있다. 하지만 1 대 다수의 교육 방식은 한계가 있으며, 고령자의 학습 효과가 미흡하여 어려움을 겪고 있다. 이 연구는 이러한 문제를 해결하고자 고령자가 반복 학습할 수 있는 환경을 고려하여, 오프라인 교육 현장에서 사용할 수 있는 교육용 서비스를 제안한다. 이 서비스는 생성형 AI를 사용하여 사용자가 실제로 어려워하는 부분을 식별하고, 개인별로 맞춤형 문제를 제공하여 개별화된 실습을 가능하게 한다. 이 앱을 기존의 지자체 교육 프로그램과 통합하여 활용하면, 1:1 맞춤형 교육, 시간 효율성, 그리고 교육 내용의 적절성 측면에서 스마트폰 교육의 효율성이 크게 향상될 것으로 기대된다.