• Title/Summary/Keyword: 생분해성 플라스틱

Search Result 75, Processing Time 0.018 seconds

The Effect of Water Activation on Chemical Modification of Cellulose and Characterization (Water activation에 기반한 셀룰로오스의 개질 및 특성)

  • Kim, Hae-Ri;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.977-982
    • /
    • 2013
  • Cellulose mixed esters (CME), substituted by various fatty acyl chains, are renewable bio-based polyesters. It has lots of potential due to the biodegradable property. In this study, Alpha cellulose was activated for 2h at $40^{\circ}C$ in deionized water prior to synthesis. Homogeneous esterification of CME was accomplished with water-activated alpha cellulose, various saturated fatty acids and acetic anhydride in lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) medium. CME was obtained after 5 hr at $120^{\circ}C$. The filtrated products were characterized using TGA, FT-IR, 1H-NMR and FE-SEM, and the influence of water activation on the total degree of substitution was investigated.

Study on compatibility of cellulose ester/poly(ethylene-co-isosorbide terephthalate) solution blends (셀룰로오스 에스터와 Poly(ethylene-co-isosorbide terephthalate) 용액 블렌드의 상용성에 관한 연구)

  • Kim, Yeon-Hee;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3351-3356
    • /
    • 2014
  • Recently, Importance of studying based on biomass materials have increased due to the concern about plastic waste problems. Cellulose acetate butyrate (CAB) is a potential alternative to petroleum-based plastics because of its biodegradable property. Poly(ethylene-co-isosorbide terephthalate) (PEIT) is bio-based plastic, produced by isosorbide monomer. In this study, CAB/PEIT blends were prepared by solution blending to improve thermal stability of CAB. CAB and PEIT were dissolved in chloroform, and then precipitated in ethanol. To evaluate the compatibility of CAB/PEIT blends, the morphology and glass transition behaviors were analyzed by FE-SEM and DMA, respectively. TGA results revealed the improved thermal stabilities of the PEIT-rich and 50:50 compositions. No new or changed crystal structures were observed in the XRD result. Finally, CAB/PEIT solution blends showed good compatibility in overall compositions.

Application of Response Surface Methodology in Medium Optimization to Improve Lactic Acid Production by Lactobacillus paracasei SRCM201474 (반응표면분석법을 이용한 Lactobacillus paracasei SRCM201474의 생산배지 최적화)

  • Ha, Gwangsu;Kim, JinWon;Im, Sua;Shin, Su-Jin;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.522-531
    • /
    • 2020
  • The aim of this study was to establish the optimal medium composition for enhancing L(+)-lactic acid (LLA) production using response surface methodology (RSM). Lactobacillus paracasei SRCM201474 was selected as the LLA producer by productivity analysis from nine candidates isolated from kimchi and identified by 16S rRNA gene sequencing. Plackett-Burman design was used to assess the effect of eleven media components on LLA production, including carbon (glucose, sucrose, molasses), nitrogen (yeast extract, peptone, tryptone, beef extract), and mineral (NaCl, K2HPO4, MgSO4, MnSO4) materials. Glucose, sucrose, molasses, and peptone were subsequently chosen as promising media for further optimization studies, and a hybrid design experiment was used to establish their optimal concentrations as glucose 15.48 g/l, sucrose 16.73 g/l, molasses 39.09 g/l, and peptone 34.91 g/l. The coefficient of determination of the equation derived from RSM regression for LLA production was mathematically reliable at 0.9969. At optimum parameters, 33.38 g/l of maximum LLA increased by 193% when compared with MRS broth as unoptimized medium (17.66 g/l). Our statistical model was confirmed by subsequent validation experiments. Increasing the performance of LLA-producing microorganisms and establishing an effective LLA fermentation process can be of particular benefit for bioplastic technologies and industrial applications.

Production of Poly-3-hydroxybutyrate from Xylose by Bacillus megaterium J-65 (Bacillus megaterium J-65에 의한 xylose로부터 poly-3-hydroxybutyrate 생산)

  • Jun, Hong-Ki;Jin, Young-Hi;Kim, Hae-Nam;Kim, Yun-Tae;Kim, Sam-Woong;Baik, Hyung-Suk
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1625-1630
    • /
    • 2008
  • A microorganism capable of producing high level of poly-3-hydoxybutyrate (PHB) from xylose was isolated from soil. The isolated strain J-65 was identified as Bacillus megaterium based on the morphological, biochemical and molecular biological characteristics. The optimum temperature and pH for the growth of B. megaterium J-65 were $37^{\circ}C$ and 8.0, respectively. The optimum medium composition for the cell growth was 2% xylose, 0.25% $(NH_4)_2SO_4$, 0.3% $Na_2HPO_4{\cdot}12H_2O$, and 0.1% $KH_2PO_4$. The optimum condition for PHB accumulation was same to the optimum condition for cell growth. Copolymer of ${\beta}$-hydroxybutyric and ${\beta}$-hydroxyvaleric acid was produced when propionic acid was added to shake flasks containing 20 g/l of xylose. Fermenter culture was carried out to produce the high concentration of PHB. In batch culture, cell mass was 9.82 g/l and PHB content was 35% of dry cell weight. PHB produced by B. megaterium J-65 was identified as homopolymer of 3-hydoxybutyric acid by GC and NMR.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.