DOI QR코드

DOI QR Code

The Effect of Water Activation on Chemical Modification of Cellulose and Characterization

Water activation에 기반한 셀룰로오스의 개질 및 특성

  • Kim, Hae-Ri (School of Energy.Materials.Chemical Engineering, Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Nam, Byeong-Uk (School of Energy.Materials.Chemical Engineering, Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 김해리 (한국기술교육대학교 에너지.신소재.화학공학부 응용화학공학과) ;
  • 남병욱 (한국기술교육대학교 에너지.신소재.화학공학부 응용화학공학과)
  • Received : 2012.10.23
  • Accepted : 2013.02.06
  • Published : 2013.02.28

Abstract

Cellulose mixed esters (CME), substituted by various fatty acyl chains, are renewable bio-based polyesters. It has lots of potential due to the biodegradable property. In this study, Alpha cellulose was activated for 2h at $40^{\circ}C$ in deionized water prior to synthesis. Homogeneous esterification of CME was accomplished with water-activated alpha cellulose, various saturated fatty acids and acetic anhydride in lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) medium. CME was obtained after 5 hr at $120^{\circ}C$. The filtrated products were characterized using TGA, FT-IR, 1H-NMR and FE-SEM, and the influence of water activation on the total degree of substitution was investigated.

다양한 종류의 지방산 아실 체인으로 치환된 Cellulose mixed esters(CME)는 재생 가능한 bio-based 폴리머이다. 셀룰로오스 에스터는 생분해성 고분자로써, 분해되지 않는 석유계 플라스틱을 대체할 미래 고분자 소재이다. 본 연구에서는 개질 실험에 앞서 alpha 셀룰로오스를 $40^{\circ}C$의 증류수에 2시간동안 activation하였다. Water-activated 셀룰로오스와, 다양한 불포화 지방산, 무수 아세트산을 $120^{\circ}C$의 lithium chloride/N,N-dimethylacetamide (LiCl/DMAc)용매에서 5시간동안 반응시켜 CME를 합성했다. 세척과 감압을 반복한 후, TGA, FT-IR, 1H-NMR과 FE-SEM를 통해 특성을 관찰하였고, water activation이 셀룰로오스의 수산기 치환에 미치는 영향에 대하여 조사하였다.

Keywords

References

  1. N. Lavoine, et al., "Microfibrillated cellulose - Its barrier properties and applications in cellulosic material: A review", Carbohydrate Polymers, vol.90, pp. 735-764, 2012. DOI: http://dx.doi.org/10.1016/j.carbpol.2012.05.026
  2. E. Gumuskaya, et al., "The effects of various pulping conditions on crystalline structure of cellulose in cotton linters", Polymer Degradation and Stability, vol.81, pp.559-564, 2012. DOI: http://dx.doi.org/10.1016/S0141-3910(03)00157-5
  3. A.C. Albertsson, et al., "Degradable polyesters as biomaterials", Acta Polymerica, vol.39, pp.95-104, 1988. DOI: http://dx.doi.org/10.1002/actp.1988.010390118
  4. C. F. Liu, et al., "Structural and thermal characterization of sugarcane bagasse cellulose succinates prepared in ionic liquid", Polymer Degradation and Stability, vol.91, pp.3040-3047, 2006. DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2006.08.004
  5. K. J. Edgar, et al., "Advances in cellulose ester performance and application", Progress in Polymer science, vol.26, pp.1605-1688, 2001. DOI: http://dx.doi.org/10.1016/S0079-6700(01)00027-2
  6. J. Peydecastaing, et al., "Bi-acylation of cellulose: determining the relative reactivities of the acetyl and fatty-acyl moieties", Cellulose, vol.18, pp.1015-1021, 2011. DOI: http://dx.doi.org/10.1007/s10570-011-9528-9
  7. D. L. Morgado, et al., "Thermal Decomposition of Mercerized Linter Cellulose and its Acetates Obtained from a Homogeneous Reaction", Polimerous, vol.21, pp.111-117, 2011. DOI: http://dx.doi.org/10.1590/S0104-14282011005000025
  8. S. Richardson, et al., "Characterisation of the substituent distribution in starch and cellulose derivatives", Analytica Chimica Acta, vol.497, pp.27-65, 2003. DOI: http://dx.doi.org/10.1016/j.aca.2003.08.005
  9. S. Park, et al., "Cellulose crystallinity index_ measurement techniques and their impact on interpreting cellulase performance", Biotechnology for Biofuels, vol.3, 2010. DOI: http://dx/doi.org/10.1186/1754-6834-3-10
  10. Y. Kataoka, et al., "Quantitative analysis for the cellulose $1{\alpha}$ crystalline phase in developing wood cell walls", International Journal of Biological Macromolecules, vol.24, pp.37-41, 1998. DOI: http://dx.doi.org/10.1016/S0141-8130(98)00065-8
  11. M. Akerholm, et al., "Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy", Carbohydrate Research, vol.399, pp.569-578, 2003. DOI: http://dx.doi.org/10.1016/j.carres.2003.11.012
  12. C. Vaca-Garcia, et al., "Cellulose esterification with fatty acids and acetic anhydride in lithium chloride/N,N -dimethylacetamide medium", JAOCS, vol.75, No.2, pp.315-319, 1998. DOI: http://dx.doi.org/10.1007/s11746-998-0047-2
  13. D. J. Gardner, et al., "Adhesion and Surface Issues in Cellulose and Nanocellulose", Jounal of Adhesion Science and Technology, vol.22, pp.545-567, 2008. DOI: http://dx.doi.org/10.1163/156856108X295509