• Title/Summary/Keyword: 생물 종 생존가능성

Search Result 23, Processing Time 0.038 seconds

다슬기 (Semisulcospira libertina libertina)의 사육밀도별 성장과 생존율

  • 정해진;문승현;장영진
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.381-382
    • /
    • 2001
  • 다슬기 (Semisulcospira libertina libertina)는 식용으로 기호도가 높고 유용 수산자원으로서 개발 가치가 높으나 성장이나 자원량에 관한 기초 생물학적인 조사는 충분히 이루어지지 않고 있다. 최근에는 중금속, 농약 등에 오염될 가능성이 있어 자연산 다슬기의 식용 가능성 여부가 불투명한 상태에 이르고 있으며, 자연자원도 급격히 줄어 들고 있는 실정이다. 따라서 다슬기의 종묘생산 및 양식기술 개발에 대한 관심이 고조되고 있으며, 이 종에 대한 번식생물학적인 연구 (Chang et al., 2000)가 진행되고 있으나, 다슬기 종묘의 성장 상황에 대한 기준 자료는 찾아보기 힘들다. (중략)

  • PDF

Analyzing the Impact of Species on Urban Development Using Meta Population Model (메타개체군 이론을 활용한 도시개발에 따른 생물 종 영향 평가 활용 가능성 분석)

  • Eun Sub Kim;Young Won Mo;Tae Yoon Park;Yoonho Jeon;Jiyoung Choi;Dong Kun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.61-71
    • /
    • 2023
  • As differences in the impact of each species on a spatial scale occur, analysis at the landscape scale is necessary to evaluate the impact of a development project. In previous studies, the Incidence Function Model (IFM) based on meta population theory was used to analyze the impact of species on the environment that changes according to urban development. However, since the model was required at least 10 occupied areas, it is difficult to use it for species that are difficult to monitor such as endangered species. Therefore, we proposed the Incidence Function Model (IFM) using species distribution model to fill the species data. In addition, we reviewed whether the developed model can be used in environmental impact assessment. As a result of the analysis, the minimum occupancy of Prionailurus bengalensis on urban development decreased to 56.5% and the possibility of survival to 28.7%. We confirmed that It rapidly decreased from the reference points of 230 and 70habitats through analysis of the meta-population capacity according to the decrease in the number of habitats. These results can be assessing the environment impact of each species on habitat loss. And it can support decision-making on the minimum number and area of habitat for species protection. This study is expected to be used as basic data for environment impact assessment on before and after development projects and mitigation measures plans, thereby increasing the effectiveness of reduction plans.

A Study on the Conservation of Biodiversity by the Ecological Economic Numerical Model (생태경제수치모형에 의한 생물다양성 보존에 관한 연구)

  • Kim, Byung-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.629-637
    • /
    • 2022
  • It is at risk of depletion of biodiversity due to indiscriminate overfishing of ecosystems and destruction of habitats. Intensive fertilizers or development of related facilities to increase agricultural production in poor indigenous areas devastate the soil. Preservation of biodiversity is now emerging as an important issue of global human coexistence. After the Post-2020 GBF Declaration, all governance in agricultural development in indigenous agricultural areas should be supported and promoted as biodiversity conservation measures. A compromise plan to reduce ecosystem development and biodiversity loss can help establish public governance policies. In this paper, a viability kernel used for viable control feedback analysis is introduced to solve conflicting economic and ecological problems in ecosystem conservation, and a mathematical model on biodiversity conservation by the viability kernel is examined. Because all species in the ecosystem are interdependent, if the balance is broken, biodiversity is depleted, which is irreversible and eventually leads to extinction. For sustainable use and harmony of biological resources, a lot of policy consideration is required, such as creative governance that can efficiently protect all species. Subsidies or tax incentives have a direct impact on biodiversity conservation. The recovery of species in a state of decreasing biodiversity can be said to be of great economic value. Biodiversity will allow indigenous producers to be proud of their unique traditional knowledge and have a positive impact on local tourism, thereby enhancing regional identity and greatly contributing to the survival and prosperity of mankind.

Survival and Growth Responses on Jumping of the Each Saline Concentrations of Freshwater Cladoceran Moina macrocopa and Estuarine Cladoceran Diaphanosoma celebensis (담수산 물벼룩 Moina macrocopa과 기수산 물벼룩 Diaphanosoma celebensis의 염분 농도별 점프 이동에 대한 생존 및 증식 반응)

  • Jung Min-Min;KIM Hyeung-Sin;RHO Sum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.697-704
    • /
    • 2001
  • In this study, we investigated that the survival and growth responses of freshwater cladoceran Moina macrocopa and estuarine cladoceran Diaphanosoma celebensis on the saline culture conditions after transferring for using as live food organism. Estuarine cladoceran D. celebensis was survived and grew on the all salines except to saline jump culture condition of 0 ppt. However, freshwater cladoceran M. mcrocopa was died or decline on the over saline jumping culture conditions of 4 ppt within 5 minutes. These suggest the possibility of using the estuarine cladoceran D. celebensis compare with freshwater cladoceran M. macrocopa as a substitute live food organism for Artemia in the marine larval rearing.

  • PDF

Control of Red Pepper Anthracnose Using Bacillus subtilis YGB36, a Plant Growth Promoting Rhizobacterium (식물생장촉진근권세균 Bacillus subtilis YGB36을 이용한 고추 탄저병의 생물학적 방제)

  • Lee, Yong Yoon;Lee, Younmi;Kim, Young Soo;Kim, Hyun Sup;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.8-18
    • /
    • 2020
  • Red pepper, one of the major economic crops in Korea, is being affected by anthracnose disease caused by Colletotrichum acutatum. To control this disease, an antagonistic bacterial strain, Bacillus subtilis YGB36 identified by 16S rDNA sequencing, physiological and biochemical analyses is used as a biological control agent. In vitro screening revealed that the strain YGB36 possess strong antifungal activity against the pathogen Cylindrocarpon destructans. The strain exhibited cellulase, protease, amylase, siderophore production and phosphate solubility. In vitro conidial germination of C. acutatum was most drastically inhibited by YGB36 cell suspensions (106 cfu/ml) or culture filtrate. Development of anthracnose symptoms was reduced on detached immature green pepper fruits by treatment with cell suspensions, and its control value was recorded as 65.7%. The YGB36 bacterial suspension treatment enhanced the germination rate of red pepper seeds and promoted root development and growth under greenhouse conditions. The in vitro screening of fungicide and insecticide sensitivity test against YGB36 revealed that the bacterial growth was not affected by any of the insecticides, and 11 fungicides out of 21 used. Collectively, our results clearly suggest that the strain YGB36 is considered as one of the potential biocontrol agents against anthracnose disease in red pepper.

Physiological Ecology of parasitic Dinoflagellate Amoebophrya and Harmful Algal Blooms (기생성 와편모류 Amoebophrya의 생리 생태적 특성과 적조)

  • 박명길
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.181-194
    • /
    • 2002
  • Parasitism is a one-sided relationship between two organisms in which one benefits at the expense of the other. Parasitic dinoflagellates, particularly species of Amoebophrya, have long been thought to be a potential biological agent for controlling harmful algal bloom(HAB). Amoebophrya infections have been reported for over 40 species representing more than 24 dinoflagellate genera including a few toxic species. Parasitic dinoflagellates Amoebophrya spp. have a relatively simple life cycle consisting of an infective dispersal stage (dinospore), an intracellular growth stage(trophont), and an extracellular reproductive stage(vermiform). Biology of dinospores such as infectivity, survival, and ability to successfully infect host cells differs among dinoflagellate host-parasite systems. There are growing reports that Amoebophrya spp.(previously, collectively known as Amoebophrya ceratii) exhibit the strong host specificity and would be a species complex composed of several host-specific taxa, based on the marked differences in host-parasite biology, cross infection, and molecular genetic data. Dinoflagellates become reproductively incompetent and are eventually killed by the parasite once infected. During the infection cycle of the parasite, the infected host exhibits ecophysiologically different patterns from those of uninfected host in various ways. Photosynthetic performance in autotrophic dinoflagellates can be significantly altered following infection by parasitic dinoflagellate Amoebophrya, with the magnitude of the effects over the infection cycle of the parasite depending on the site of infection. Parasitism by the parasitic dinoflagellate Amoebophrya could have significant impacts on host behavior such as diel vertical migration. Parasitic dinoflagellates may not only stimulate rapid cycling of dissolved organic materials and/or trace metals but also would repackage the relatively large sized host biomass into a number of smaller dinospores, thereby leading to better retention of host's material and energy within the microbial loop. To better understand the roles of parasites in plankton ecology and harmful algal dynamics, further research on a variety of dinoflagellate host-parasite systems is needed.

Ecotoxicological Response of Cd and Zn Exposure to a Field Dominant Species, Chironomus plumosus (카드뮴과 아연 노출에 따른 야외종 장수깔따구(Chironomus plumosus)의 생태독성학적 반응)

  • Kim, Won-Seok;Hong, Cheol;Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.266-273
    • /
    • 2019
  • Heavy metal contamination in freshwater ecosystem has been receiving increased worldwide attention due to their direct or indirect effect on human health and aquatic organisms. In this study, we investigated biological effects such as survival rate, growth rate, emergence rate, sex ratio and mouthpart deformity of Chironomus plumosus. The survival rate of C. plumosus decreased with the increase in heavy metal concentration as well as exposure time after cadmium (Cd) or zinc (Zn) exposure. The growth rate decreased at days 4 and 7 after Cd exposure and significantly reduced at the relatively high concentration of $50mg\;L^{-1}$ Cd. The emergence rate was decreased at $50mg\;L^{-1}$ Cd and $100mg\;L^{-1}$ Zn. The sex ratio showed imbalance pattern at relatively low concentrations (0.5 and $2mg\;L^{-1}$ Cd) with high proportion of male and relatively high concentration ($100mg\;L^{-1}$ Zn) with high proportion of female (60%). In addition, mentum deformities were observed at high concentration of Cd and Zn. These results suggest that heavy metal exposure in aquatic ecosystem may affect biological and morphological responses, and aquatic midge C. plumosus is a potential indicator for assessment of environmental pollutant such as heavy metals.

The Anticancer Effect of Inonotus obliquus Pilat (Chaga) Processed by Nanomill Technology In vivo (나노밀 가공된 차가버섯의 항암효과)

  • Kim, Dong-Heui;Teng, Yung-Chien;Yoon, Yang-Sook;Qi, Xu-Feng;Jeong, Hyun-Seok;Chang, Byung-Soo;Lee, Kyu-Jae
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.125-132
    • /
    • 2009
  • Extracts and fractions of Inonotus obliquus (Chaga in Russia) have been known to have various biological activities, including antimutagenic, anticancer, antioxidative, and immunostimulating effects. This study was performed to confirm anticancer effect of 10% superfine Chaga mushroom processed by nano-mill technology on C57BL/6 mice. Chaga particles belonged in the size of 1 ${\mu}m$ was about 40% after nanomill processing according to the volume distribution. As the result of subcutaneous injection of B16BL6 melanoma cells to the mice, the tumor volume (p<0.001) and tumor weight (p<0.01) was significantly decreased in the experimental (NCh) group as compared with control (C) group and the tumor growth inhibitory rate was 29.2%. On examination of survival rate after intraperitoneal injection of B16BL6 melanoma cells, the mean survival time per a mouse was 17.7 and 26.0 days in C and NCh group respectively. The survival rate of NCh group was 40% when that of C group was 0% at the 35th day. On the result of examination to confirm histological toxicity by Chaga superfine particles, both groups did not show any morphological and pathological changes in the small and large intestine under the light microscope. These results suggest that feeding of superfine Chaga produced by nanomill technique has a tumor growth inhibitory effect in vivo.

Antiproliferative Effect of Extracts from Corydalis heterocarpa on Human Cancer Cells (염주괴불주머니 (Corydalis heterocarpa) 추출물의 암세포 성장 억제 효과)

  • Kim, You-Ah;Lee, Jung-Im;Kong, Chang-Suk;Yea, Sung-Su;Seo, Young-Wan
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.201-206
    • /
    • 2009
  • Whole plants of Corydalis heterocarpa were extracted twice with $CH_2Cl_2$ and MeOH in turn. The combined crude extracts were concentrated in vacuo and then partitioned between $CH_2Cl_2$ and $H_2O$. The organic layer was fractionated with n-hexane and 85% aq. MeOH, and the aqueous fraction was also further fractionated with n-BuOH and $H_2O$, successively. Growth inhibition effects of crude extracts and their solvent fractions were evaluated in AGS, HT1080, U-937, MCF-7 and HT-29 human cancer cells using MTT assay. The inhibitory effects of solvent fractions were increased in a dose-dependent manner. Among these tested samples, 85% aq. MeOH fraction showed the most potent inhibitory effect on the growth of human cancer cells. These results suggest that active compounds having much stronger anticancer effect can be isolated from Corydalis heterocarpa.

Fish Farm Performance of Copper-alloy Net Cage: Biological Safety of Red Sea Bream Pagrus major Rearing the Copper-alloy Net Cage (동합금가두리망에서 사육한 참돔, Pagrus major의 생물학적 안전성)

  • Shin, Yun Kyung;Kim, Won-Jin;Jun, Je-Cheon;Cha, Bong-Jin;Kim, Myoung-Sug;Park, Jung Jun
    • Korean Journal of Ichthyology
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2017
  • To understand the application in farm for the fish aquaculture, we investigated biological and pathological traits on red sea bream Pagrus major which were reared in each copper-alloy net cage and the synthetic fiber net cage for 9 months. Two groups of cage were made and set in Yokji-eup, Tongyoung, Gyeongsangnam-do in size of 25 m in diameter and 10 m of depth. Survival rate of the red sea bream in the rearing copper-alloy net cage and synthetic fiber cage showed 99.75% and 99.70% respectively, there was no significant difference. Daily weight growth rate in each net was shown to 2.13 g/day and 1.65 g/day. Health analysis by blood composition analysis showed a favorable result in the copper-alloy net cage rather than in the synthetic fiber net. Bioaccumulation of heavy metal such as Cu and Zn especially in gonad was higher than other organ. Bioaccumulation of Cu and Zn in the muscle was lower compared to the permitted standard for food safety. Pathogenic infection test discovered Microcotyle tai for parasite, V. alginolyticus and other five species for bacteria. But there was a little bit difference of bacteria infection in copper-alloy net cage and copper-alloy net cage is expected to be has antibacterial effect. Thus, copper-alloy net cage can be applied to farm considering its system stability, recycling, antibiosis and food safety.