• 제목/요약/키워드: 생물학적 에너지

검색결과 262건 처리시간 0.031초

바이오 에너지

  • 이상기
    • 미생물과산업
    • /
    • 제14권3호
    • /
    • pp.33-36
    • /
    • 1988
  • 대체에너지를 개발하고자 할때 반드시 고려햐야 할 사항으로는 새롭게 개발된 대체에너지가 산업의 석유의존도를 낮출 수 았어야 하고, 환경을 오염시키지 않으며, 공급이 안정되고 필요에 따라서는 언제라도 재생이 가능해야 한다. 이러한 제 조건을 충족시킬 수 있는 대체에너지로서 가장 유망한 것이 무한한 태양에너지를 생물학적 전환방법을 통해 연료화할 수 있는 바이오에너지이다. 바이오에너지란 광합성을 통해 형성된 바이오매스를 생물학적인 시스템을 이용하여 여러가지의 에너지형태로 전환시킨 것이다. 바이오매스의 생물학적 전환과정에서 가장 중요한 역할을 담당하는 것이 생태계에 널리 분포하고 있는 미생물이며 이들 미생물의 독특한 물질대사와 환경조건에 따라 다양한 형태의 바이오에너지가 얻어지는 것이다.

  • PDF

생물전기화학적 기술을 이용한 물질 전환

  • 김병홍
    • 미생물과산업
    • /
    • 제17권2호
    • /
    • pp.18-21
    • /
    • 1991
  • 생물은 자기 복제를 통한 생장이나 생명유지를 위해 에너지를 필요로 한다. 화학영양생물은 화학에너지를 발효 혹은 호흡을 통해 생물학적 에너지로 전환시키며, 광영양생물은 광합성 작용을 통해 광에너지를 이용한다. 발효, 호흡, 광합성은 모두 산화-환원 반응을 통해 이루어진다. 생물의 모든 에너지 전환반응은 산화-환원 반응, 즉 전자의 흐름으로 이루어지며 생명현상이 에너지를 필요로 하기 때문에 생명현상은 전자의 흐름으로 이루어진다고 할 수 있다. 모든 생물이 에너지 전환 반응에 산화-환원 반응을 이용한다는 말은 생물이 많은 종류의 산화-환원 효소를 보유하고 있다는 뜻이며, 실제 많은 종류의 산화-환원 효소가 발견되고 연구되었다.

  • PDF

생물학적인 방법을 통한 대체 에너지로서의 수소생산 (Hydrogen Production in Biological Way as Alternative Energy)

  • 조영화;조병훈;차형준
    • 유기물자원화
    • /
    • 제19권1호
    • /
    • pp.57-63
    • /
    • 2011
  • 화석연료가 고갈되어 감에 따라 사람들은 이를 대처할 수 있는 대체에너지를 찾기 시작했다. 이 대체 에너지는 환경 친화적이며 재생 가능해야 된다는 단서가 붙는데 그 중 가장 많은 주목을 받은 것이 수소이다. 현재 수소는 다양한 방법으로 생산되고 있는데 생물학적으로 수소를 생산하는 방법이 가장 환경 친화적인 방법으로 인식되고 있다. 그러나 아직 생물학적으로 수소를 생산하는 방법은 아직 상업화하기엔 경쟁력이 많이 부족하기 때문에 많은 연구자들이 바이오 수소 생산 방법과 그 생산성 및 생산수율을 높이기 위하여 노력하고 있다. 본 고에서는 생물학적 수소생산의 다양한 개발 접근방법들의 진행 추이를 정리하였다.

유기성 폐기물 및 폐수로부터 2단계 생물학적 수소생산 및 통합화 시스템 (Two-stage Biological Hydrogen Production form Organic Wastes and Waste-waters and Its Integrated System)

  • 김미선;윤영수
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.52-64
    • /
    • 2002
  • 유기성 폐기물을 이용하여 생물학적 수소생산 통합화 시스템 연구를 수행하였다. 통합화 시스템은 유기성폐기물의 전처리, 2단계 혐기발효 및 광합성 배양으로 구성된 생물학적 수소생산 공정, 초임계수 가스화 공정, 생산된 가스의 저장, 분리 및 연료전지를 이용한 전력 생산으로 구성되었다. 실험에 사용된 유기성 폐자원은 식품공장 폐수, 과일폐기물, 하수슬러지이며, 전처리는 폐기물에 따라 열처리 및 물리적 처리를 하였으며, 전처리된 시료는 생물학적 수소생산 공정에 직접 적용되었다. Clostridium butyricum 및 메탄 생성조에서 발생하는 하수슬러지중의 미생물 복합체는 수소생산 혐기 발효공정에 사용되었으며, 광합성 수소생산 미생물인 홍색 비유황 세균은 광합성 배양에 사용되었다. 생물학적 공정에서 발생하는 미생물 슬러지는 초임계수 가스화 공정으로 수소를 발생하였으며, 슬러지 중의 COD를 저하시켰다. 생물학적 공정 및 초임계수 가스화 공정에서 발생하는 수소는 가스탱크에 가입상태로 저장한 후, 95%순도로 분리하였으며, 정제된 수소는 연료전지에 연결하여 전력 생산을 하였다.

새로운 Enterobacter asburiae SNU-1의 혐기발효에 의한 생물학적 수소생산 (Dark fermentation for hydrogen production with a new bacterium Enterobacter asburiae SNU-1)

  • 신종환;김미선;심상준;박태현
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2005년도 수소연료전지공동심포지움 2005논문집
    • /
    • pp.177-186
    • /
    • 2005
  • 미래의 친환경 에너지인 수소에너지 생산을 위해서 생물학적인 수소생산방법에 관한 관심이 증폭되고 있다. 생물학적인 수소생산 방법에는 여러 가지가 있으나 그중 유기물을 혐기발효하여 수소를 생산하는 방법에 관한 연구가 수행되었다. 본 연구에서 혐기성 미생물인 Enterobacter asburiae SNU-1이 쓰레기 매립지 토양에서 분리되어 수소생산 조건의 최적화 실험을 수행하였다. 본 실험에 이용된 미생물의 경우는 기존에 연구 된 적이 없는 새로운 종으로써 다른 미생물과는 다른 특징을 나타내며 수소생산 능력도 뛰어난 것을 알 수 있었다. 미생물을 이용한 수소생산에 영향을 미치는 인자로는 pH, initial glucose concentration 등이 있으며 각각의 조건에서 수소생산량을 비교하였다. 실험 결과 strain SNU-1의 최적 pH는 7이었으며 최적 initial glucose concentration은 25 g/1이다 이와 같은 최적 조건에서 strain SNU-1은 6.87 mmol/l/hr의 productivity를 나타내었다. 또한 다른 미생물과 달리 미생물이 더 이상 자라지 않는 정지기에서 더 많은 수소생산량을 나타내는 특이한 거동을 보이는 것이 관찰되었다.

  • PDF

연료전지로의 직접 공급을 위한 생물학적 수소생산 (In situ production of biohydrogen for fuel cell)

  • 신종환;윤종현;박태현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.470-473
    • /
    • 2006
  • 생물학적 수소생산을 위해 토양으로부터 새로운 균주인 Enterobacter asburiae SNU-1이 분리되었다 이 균주의 경우 다른 균주와는 달리 미생물 생장과 수소생산 phase가 분리되는 특징을 가지고 있다. 이러한 정지기에서의 수소생산은 미생물 내에 존재하는 formate hydrogen lyase를 사응하여 formate 분해에 의해 일어난다. 따라서 본 연구에서는 미생물 생장 phase에서 formate hydrogen lyase가 발현된 미생물을 얻고 이를 formate만 있는 배지에서 수소생산 가능성에 대한 연구를 수행하였다. 앞으로 formate분해를 위한 조건을 최적화한다면 높은 수소생산성을 나타낼 것이라 기대된다. 또한, 이는 formate로부터 미생물촉매를 이용하여 수소를 생산하고 이를 연료전지로 공급하는 생물학적 reformer로써의 이용 가능성을 보여준다.

  • PDF

생물촉매를 이용한 고효율 바이오디젤 생산

  • 손정훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.267-275
    • /
    • 2005
  • 차세대 재생산성 에너지로 각광을 받고 있는 바이오디젤은 현재 주로 알칼리촉매를 이용하는 화학공정으로 생산하고 있으나 고에너지 요구성이며 대규모 생산시 폐수발생 등 환경오염 유발요인이 있기 때문에 친환경 생물공정의 필요성이 대두되고 있다. 생물촉매 리파제(lipase)를 이용하는 친환경 생물공정은 화학공정에 비해 다양한 장점을 제공하고 있으나 고가의 효소생산 비용문제로 실용화에 어려움이 있다. 따라서 본 연구에서는 저비용의 생물학적 바이오디젤 생산 시스템 구축을 위해 고활성의 효소 개발, 경제적 재조합 대량생산, 반복 재사용을 위한 효소고정화 등을 통해 고효율의 생산반응계를 개발하였다. 우선 바이오디젤 생산공정에 적합한 리파제로서 CalB(Lipase B of Candida antarctica)를 선택하고 분자 진화기술을 이용하여 효소활성을 17배 향상시킨 CalB14를 개발하였다. CalB14를 효모 발현시스템을 이용하여 경제적 대량생산하기 위해 단백질분비를 획기적으로 개선할 수 있는 맞춤형 분비융합합인자기술(TFP technology)을 이용하여 재조합 CalB를 2 grams/liter 수준으로 분비생산하였다. 생산된 효소를 반복 재사용이 가능하도록 다양한 레진에 고정화하였고 최적의 바이오디젤 전환반응용 고정화효소를 개발하였다. 고정화효소를 효율적으로 재사용하기 위해 바이오디젤 생산용 고정상반응기(packed-bed reactor)를 제작하였으며 기질을 12시간내에 95% 이상 바이오디젤로 수십회 이상 반복전환할 수 있는 경제적인 생물학적 바이오디젤 전환 시스템을 구축하였다.

  • PDF

바이오에너지 기술의 현황과 전망 (Current Aspects and Future Prospects on Bioenergy R&D)

  • 이진석;박태현
    • 신재생에너지
    • /
    • 제2권1호
    • /
    • pp.14-20
    • /
    • 2006
  • 본고에서는 고유가에 대한 대응 효과가 높아 주목을 받고 있는 바이오에너지 기술의 개발 현황 및 전망에 대해 기술하였다. 바이오에너지는 열 또는 전기를 생산하는 여타의 신재생에너지원과는 달리 에너지의 장기 저장이 가능한 연료의 형태로 생산 가능하다는 장점이 있다. 바이오에너지 생산에 사용되는 원료인 바이오매스에는 유기성 폐기물, 농임산 부산물과 에너지 작물 등이 있으며 이들로부터 에너지를 생산하는데 적용되는 기술도 열화학적 기술과 생물학적 전환 기술이 있다. 적용된 기술에 따라 생산된 바이오에너지는 열, 전기뿐만 아니라 수송용 대체연료 등의 형태로 활용된다. 이러한 바이오에너지기술 중 일부는 상용화 되어 실제 보급 중에 있으며 다른 기술들은 보다 미래 기술로 개발 중에 있다. 국내외에서 상용되었거나 개발 중인 주요 바이오에너지 기술의 R&D 현황 및 전망에 대해 요약하였다.

  • PDF

생물학적 수소생산 공정 (Biological Hydrogen Production Processes)

  • 신종환;박태현
    • Korean Chemical Engineering Research
    • /
    • 제44권1호
    • /
    • pp.16-22
    • /
    • 2006
  • 생물학적 수소생산 공정은 다른 열화학적 공정이나 전기화학적 공정에 비하여 환경친화적이며 에너지를 덜 소모하는 공정이다. 생물학적 수소생산 공정은 크게 두 가지로 구별할 수 있는데, 광합성에 의한 수소생산과 혐기발효에 의한 수소생산이 그것이다. 광합성에 의한 수소생산 공정은 주로 물로부터 수소를 생산하고 동시에 공기 중의 이산화탄소도 저감하는 특징을 가지고 있으며, 혐기발효에 의한 수소생산 공정은 유기 탄소원을 섭취하는 박테리아에 의한 발효를 통해 이루어지는 공정이다. 본 논문에서는 생물학적 수소생산 공정에 대한 그간의 연구들에 대하여 살펴 보았다.

Thiobacillus ferrooxidans를 이용한 광미 정화의 효율 증진에 관한 연구 (A Study on the Cleanup Efficiency Enhancement of Mine Tailings using Thiobacillus ferrooxidans)

  • 이지희;조장환;정동철;장윤영;최상일
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1999년도 정기총회 및 춘계 공동 학술발표회
    • /
    • pp.91-93
    • /
    • 1999
  • 충북 단양에 위치한 조일 광산에서 채취한 구리와 아연으로 오염된 광미 (광산 폐기물로서 금속 추출 후 남은 찌꺼기)를 효율적으로 처리하기 위하여 생물학적 용출기법(bioleaching)의 효율 증진에 관한 연구를 수행하였다. 기본 배지 조성(9K medium) 중 미생물의 성장 및 증식, 용출 효율에 영향을 미치는 인자인 에너지원, 인, 질소원의 농도를 변화시키며 배지 조성에 따른 중금속의 용출 효율을 관찰하였다. 그 결과 인 농도 변화는 인을 첨가하지 않았을 때, 아연과 구리의 용출 효율이 각각 98.8%와 47.5%로 나타났고, 질소원은 45mM 농도로 주입하였을 때 아연, 구리 각각 85%와 46.4%의 용출 효율을 보였다. 에너지원 변화에 서는 아연의 경우 에너지원을 첨가하지 않았을 때 93%의 용출 효율을 나타냈고, 구리의 경우는 160mM 첨가했을 때 46.4%로 가장 높은 용출 효율을 나타냈다.

  • PDF