• Title/Summary/Keyword: 생물학적 선량측정

Search Result 70, Processing Time 0.025 seconds

Analysis of Radiation Dose for Lens, Thyroid Gland, Breast, and Gonad on Upper Gastrointestinal Series (위장조영검사에서 수정체, 갑상선, 유방, 생식선에 대한 피폭선량 분석)

  • Lim, Byung-Hak;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.889-894
    • /
    • 2019
  • Upper gastrointestinal series is an examination that uses X-rays. It is important to defend against exposure to radiation during upper gastrointestinal examination because the organs, such as thyroid gland, lens, breasts, and gonads, with relatively high biological sensitivity to radiation are distributed on the examination area. We have made a whole body phantom that can change the depth of organs. radiation dose of eye, thyroid gland, breast and gonads were measured by the same procedure as the actual upper gastrointestinal examination. When performed only fluoroscopy the mean dose reduction of lens, thyroid gland, breast and gonads was 62.2%. The mean dose reduction of lens, thyroid gland, breast and gonads was 59.0% when both fluoroscopy and spot shoot were performed. Therefore, when performed upper gastrointestinal examination it was confirmed that shielding of the lens, thyroid gland, breast and gonads was effective in decreasing the exposure dose. The manufactured human phantom can be used in measuring radiation dose for deep organ because it can adjust the height corresponding to the organs located in the human body.

A Study on the Patient Exposure Doses from the Panoramic Radiography using Dentistry (치과 파노라마 촬영에서 환자의 피폭선량에 관한 연구)

  • Park, Ilwoo;Jeung, Wonkyo;Hwang, Hyungsuk;Lim, Sunghwan;Lee, Daenam;Im, Inchul;Lee, Jaeseung;Park, Hyonghu;Kwak, Byungjoon;Yu, Yunsik
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • This study estimate radiation biological danger factor by measuring patient's exposed dose and propose the low way of patient's exposed dose in panoramic radiography. We seek correcting constant of OSL dosimeter for minimize the error of exposed dose's measurement and measure the Left, Right crystalline lens, thyroid, directly included upper, lower lips, the maxillary bone and the center of photographing that indirect included in panoramic radiography by using the human body model standard phantom advised in ICRP. In result, the center of photographing's level of radiation maximum value is $413.67{\pm}6.53{\mu}Gy$ and each upper, lower lips is $217.80{\pm}2.98{\mu}Gy$, $215.33{\pm}2.61{\mu}Gy$. Also in panoramic radiography, indirect included Left, Right crystalline lens's level of radiation are $30.73{\pm}2.34{\mu}Gy$, $31.87{\pm}2.50{\mu}Gy$, and thyroid's level of measured exposed dose can cause effect of radiation biological and we need justifiable analysis about radiation defense rule and substantiation advised international organization for the low way of patient's exposed dose in panoramic radiography of dental clinic and we judge need the additional study about radiation defense organization for protect the systematize protocol's finance and around internal organs for minimize until accepted by many people that is technological, economical and social fact by using panoramic measurement.

Analysis of Chromosome aberrations by fluorescence in situ hybridization using triple chromosome-specific probes in human lymphocyte exposed to radiation (3중 DNA probe를 이용한 FISH(fluorescence in situ hybridization) 기법으로 방사선에 의한 염색체 이상 분석)

  • Chung, Hai-Won;Kim, Su-Young;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.1
    • /
    • pp.45-53
    • /
    • 1999
  • Fluorescence in situ hybridization with chromosome-specific probe has been shown to be a valid and rapid method for detection of chromosome rearrangements induced by radiation. This method is useful for quantifying structural aberrations, expecially for stable ones, such as translocation and insertion, which are difficult to detect with conventional method in human lymphocyte. In order to apply FISH method for high dose biological dosimetry, chromosomal abberations by radiation at doses of 1, 3, 5, and 7Gy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. The frequencies of stable translocation per cell equivalent were 0.04, 0.33, 1.22, 2.62, and 5.58 for the lymphocyte exposed to 0, 1, 3, 5, and 7Gy, respectively, and those of dicentric were 0.00, 0.06, 0.52, 1.19 and 2.44, respectively. Significantly more translocation of t(Ab), a translocated chromosome with a piece of painted acentric matrial 'b' attached to unpainted piece containing centromere 'A', than reciprocal chromosome t(Ba) was observed. The frequencies of all type of chromosome rearrangements increased with dose. From above result, FISH seemed to be useful for radiation biodosimetry by which the frequencies of various types of stable aberrations in human lymphocyte can be observed more easily than by conventional method and so will improve our ability to perform meaningful biodosimetry.

  • PDF

Result of Radiation Therapy of Cerebellar Medulloblastoma - with Emphasis on the Neuraxis Dose - (전중추신경계 조사선량을 중심으로 한 수아세포종의 방사선치료성적)

  • Kim Joo Young;Kim Il Han;Ha Sung Whan;Park Charn Il
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 1993
  • Treatment of cerebellar medulloblastoma has been much improved with modern surgical technique for gross total tumor removal and adequate radiation therapy for the whole craniospinal axis. Questions have been arosen about the optimal radiation dose for the preventive treatment of whole cranium and whole spinal axis. Recently, many authors have reported their treatment results as comparable to older data, using lower than conventional dose of 3,600 cGy-4,000 cGy. For 50 patients treated between 1981 and 1990 at the Department of Radiation Therapy of SNUH, retrospective analysis was done for the treatment result, especially the neuraxis control, by radiation dose for the presymptomatic area of the disease. Analysis only by total spinal dose did not give any significant difference. But further analysis by following patient group; 3,600 cGy/150 cGy (n=6), 3,000 cGy/150 cGy (n=10), 2,400 cGy/150 cGy (n=17) and 2,400 cGy/100-120 cGy (n=11) showed significant improvement of neuraxis control by decreasing order (p =0.003). There was no significant difference in overall survival between the groups. For the 19 patients who had been confirmed initially as having no neuraxis disease, TDF 30 was the cur-off value that could prevent neuraxis failure (p =0.004). We couldn't define any TDF value that give reasonable control for the patient group with positive CSF study at initial diagnosis.

  • PDF

Measurement of Space Dose Distribution during Exposure Micro Computed Tomography (μ-CT) for Scattering Rays (Micro-CT 촬영 시 발생되는 산란선에 관한 공간선량률 측정)

  • Jung, Hongmoon;Won, Doyeon;Kwon, Taegeon;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Non-invasive technique CT, called automated computed tomography, is used to detect lesion of a patient when diagnosing human body. Information obtained from CT plays an important role in assembling 3 dimensional images. Recently, new equipment, operated by CT, is required which can be appliable to physical and biological research. In accordance to this quest, micro-CT is invented that produce more detail and concrete information. Images supplied by CT are even more detailed and concrete, so it contributes much to the development of biology and polymer material engineering field. However, there has been little reliable reports regarding measuring information of space dose distribution about exposure dose limit of users operating micro-CT. In addition, little reports regarding space dose distribution of exposure has been known about unwanted diffraction light produced by usage of micro-CT. The exterior of micro-CT is covered by lead, which is for removing exposure of diffraction light. Thus, even if it is good enough to prevent exposure of diffraction light, consistent management of equipment will be required as time goes by and equipment are getting old as well. We measured space dose distribution regarding exposure of diffraction light of users operating micro-CT directly. Therefore, we suggest that proper management should be necessary for users operating micro-CT not to be exposed by unwanted diffraction light.

Dose Rate of Restroom in Facilities using Radioisotope (방사성동위원소 사용시설(내/외) 화장실의 외부선량률)

  • Cho, Yong-Gwi;An, Seong-Min
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.237-246
    • /
    • 2016
  • This study is therefore aimed at measuring the surface dose rate and the spatial dose rate in and outside the radionuclide facility in order to ensure safety of the patients, radiation workers and family care-givers in their use of such equipment and to provide a basic framework for further research on radiation protection. The study was conducted at 4 restrooms in and outside the radionuclide facility of a general hospital in Incheon between May 1 and July 31, 2014. During the study period, the spatial contamination dose rate and the surface contamination dose rate before and after radiation use were measured at the 4 places-thyroid therapy room, PET center, gamma camera room, and outpatient department. According to the restroom use survey by hospitals, restrooms in the radionuclide facility were used not only by patients but also by family care-givers and some of radiation workers. The highest cumulative spatial radiation dose rate was 8.86 mSv/hr at camera room restroom, followed by 7.31 mSv/hr at radioactive iodine therapy room restroom, 2.29 mSv/hr at PET center restroom, and 0.26 mSv/hr at outpatient department restroom, respectively. The surface radiation dose rate measured before and after radiation use was the highest at toilets, which are in direct contact with patient's excretion, followed by the center and the entrance of restrooms. Unsealed radioactive sources used in nuclear medicine are relatively safe due to short half lives and low energy. A patient who received those radioactive sources, however, may become a mobile radioactive source and contaminate areas the patient contacts-camera room, sedation room, and restroom-through secretion and excretion. Therefore, patients administered radionuclides should be advised to drink sufficient amounts of water to efficiently minimize radiation exposure to others by reducing the biological half-life, and members of the public-family care-givers, pregnant women, and children-be as far away from the patients until the dose remains below the permitted dose limit.

Observation on The Frequency of Chromosomal Aberration and Changes in Number of Peripheral Lymphocytes in Radioactive Iodine Treatment (방사성옥소 투여에 따른 말초혈액 림프구 수의 변화 및 염색체이상 빈도의 관찰)

  • Koo, Chun-Hee;Shin, Min-Ho;Park, Young-Ju;Lee, Jung-Yim;Park, Tae-Yong;Lee, Jae-Yong;Kim, Chong-Soon;Han, Seung-Soo;Kim, Kwang-Hoe;Kim, Hee-Geun;Kang, Duck-Won;Song, Myung-Jae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.3
    • /
    • pp.343-349
    • /
    • 1995
  • Background : For biological dosimetry of radiation exposure, both observing hematologic change and calculating Ydr by chromosomal analysis as biological indicators are widely used. However, due to the lack of studies on biological dosimetry of radiation dose absorbed in the body such as in the cases of radioactive iodine therapy, the maximal and safe dose is not well known, nor is the extent to which the body can safely endure radiation exposure. Purpose : To investegate the practical applicability of hematologic changes and Ydr as an indicator for estimating radiation exposure, to patients with thyroid diseases after doses of radioactive iodine. Material and Methods : 5 patients with hyperthyroidism and 35 patients who have had thyroid cancer operation were under treatment with radioactive iodine, changes in number of lymphocytes were tracked and Ydr was calculated for more than 2 months by chromosomal analysis in peripheral lymphocytes. Results ; 1) The number of lymphocytes began to decrease 2 weeks after doses of radioactive iodine, and reached the nadir after 6 and 8 weeks, then gradually recovered. 2) The nadir count of lymphocytes was reversely correlated with the administered dosage of radioactive iodine. 3) Ydr was generally stable between 2 and 8 weeks. 4) The maximal value of Ydr was correlated with the administered dosage of radioactive iodine. 5) Ydr value at the 2nd week increased with augmented dosage of radioactive iodine. 6) Ydr value at the 2nd week was correlated with fall of lymphocyte count. Conclusion : Patients must be closely observed, because temporary bone marrow suppression and slight chromosomal aberration can be produced by even generally used dosages of radioactive iodine for diagnosis and therapy. Maximal percent fall of lymphocyte count, Ydr at the 2 week interval and maximal Ydr can be used as the biological predictor of administered dosage of radioactive iodine.

  • PDF

The apoptotic fragment assay in rat peripheral lymphocytes and crypt cells with whole body irradiation with 60Co ϒ-rays and 50 MeV cyclotron fast neutrons (코발트-60 감마선과 50 MeV 싸이크로트론 고속 중성자선에 전신조사된 랫드의 말초 임파구와 음와 세포의 아포토시스 유도를 이용한 생물학적 선량 측정 모델 개발 연구)

  • Kim, Tae-hwan
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.203-210
    • /
    • 2001
  • Here, we compared the effectiveness of 50 MeV($p{\to}RBe^+$) cyclotron fast neutrons versus $^{60}Co$ ${\gamma}$-rays by the apoptotic fragment frequency in both rat peripheral lymphocytes and crypt cells to check a radiobiological endpoint. The incidence of apoptotic cell death was increased in all irradiated groups, and radiation at all doses trigger rapid changes in both crypt cells and peripheral lymphocytes. These data suggest that apoptosis may play an important role in homeostasis of damaged radiosensitive target organ by removing damaged cells. The curve of dose-effect relationship for these data of apoptotic fragments frequencies was $y=0.3+(6.512{\pm}0.279)D(r^2=0.975)$ after neutrons, while $y=0.3+(4.435{\pm}0.473)D+(-1.300{\pm}0.551)D^2(r^2=0.988)$ after ${\gamma}$-rays. In addition, $y=3.5+(118.410{\pm}10.325)D+(-33.548{\pm}12.023)D^2(r^2=0.992)$ after ${\gamma}$-rays in rat lymphocytes. A significant dose-response relationship was found between the frequency of apoptotic cell and dose. These data show a trend towards increase of the numbers of apoptotic cells with increasing dose. Dose-response curves for high and low linear energy transfer (LET) radiation modalities in these studies were different. The relative biological effectiveness (RBE) value for crypt cells was 1.919. In addition, there were significant peaks on apoptosis induction at 4 and 6h after irradiation, and the morphological findings of the irradiated groups were typical apoptotic fragments in crypt cells that were hardly observed in the control group. Thus, apoptosis induction in both crypt cells and peripheral lymphocytes could be a useful endpoint of rat model for studying screening test and microdosimetic indicator to evaluate the biological effects of radiation-induced cell damage.

  • PDF

Assessment of Effective Dose for General Radiography of Adults Based on Diagnostic Reference Level(DRL) by Using PCXMC Program (진단참고준위(DRL)를 기준으로 PCXMC 프로그램을 이용한 성인의 일반촬영 부위별 유효선량 평가)

  • Jeong, Hee-Cheol;Lee, SamYol
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.807-812
    • /
    • 2018
  • In this study, we investigated the conditions used in setting the recommendation level of general radiography diagnostic reference and tried to evaluate the effective dose and biological evaluation using PCXMC v2.0 program. As a result based on the effective dose of male in ICRP 60, the highest Pelvis AP was 0.794 mSv. The lowest Chest PA was 0.050 mSv. In the case of ICRP 103, the highest T-Spine AP was 0.906 mSv The lowest Chest PA was 0.052 mSv. For 40 years old male and female adults, effective doses of general radiography were evaluated and even if the medical exposures are not subject to the limit of dose, efforts should be made to reduce the medical exposures of the people by keeping the dose below the recommended amount in order to minimize the probable effect of radiation hazard.

Assessment of DNA damage and Chromosome aberration in human lymphocyte exposed to low dose radiation detected by FISH(fluorescence in situ hybridization) and SCGE(single cell gel electrophoresis) (FISH기법 및 단세포전기영동기법을 이용한 저선량 방사선에 의한 DNA 상해 및 염색체이상 평가)

  • Chung, Hai-Won;Kim, Su-Young;Kim, Byung-Mo;Kim, Sun-Jin;Kim, Tae-Hwan;Cho, Chul-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.4
    • /
    • pp.223-232
    • /
    • 2000
  • Comparative study was performed for the assessment of DNA damage and Chromosomal aberration in human lymphocyte exposed to low dose radiation using fluorescence in situ hybridization(FISH) and single cell gel electrophoresis(SCGE). Chromosomal aberrations in human lymphocytes exposed to radiation at doses of 5, 10, 30 and 50cGy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. FISH with chromosome-specific probe has been used to be a valid and rapid method fer detection of chromosome rearrangements induced by low dose radiation. The frequencies of stable translocation per cell equivalents were 0.0116, 0.0375, 0.040f, 0.0727 and 0.0814 for 0, 5, 10, 30 and 50cGy, respectively, and those of dicentric were 0.00, 0.0125, 0.174, 0.0291 and 0.0407 respectively. Radiation induced DNA damage in human lymphocyte in a dose-dependent manner at low doses from 5cGy to 50cGy, which were analysed by single tell gel electrophoresis(SCGE). From above results, FISH seemed to be useful for radiation biodosimetry by which the frequencies of stable aberrations in human lymphocyte can be observed more easily than by conventional method and SCGE also seemed to be sensitive method f9r detecting DNA damage by low dose radiation exposure, so that those methods will improve our technique to perform meaningful biodosimetry for radiation at low doses.

  • PDF