• Title/Summary/Keyword: 생물지표단백질

Search Result 52, Processing Time 0.016 seconds

Development and Research on a Functional Hydrolyzed Whey Protein Powder Product with Sialic Acid as a Marker Compound - II. Repeated 90-day Oral Administration Toxicity Test using Rats Administered Whey Protein Powder containing Highly Concentrated Sialic Acid (23%) produced by Enzyme Separation and Solvent Enrichment Method - (Sialic Acid를 지표성분으로 하는 유청가수분해단백분말의 기능성식품 개발연구 - II. 효소분리 용매정제로 고농도 Sialic Acid가 함유된 유청가수분해단백분말(23%)의 랫드를 이용한 90일 반복경구투여 독성시험 평가 연구 -)

  • Noh, Hye-Ji;Cho, Hyang-Hyun;Kim, Hee-Kyong;Koh, Hong-Bum
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.117-135
    • /
    • 2016
  • The present study was performed to develop a functional raw food material from hydrolyzed whey protein powder (23%-GNANA) medication containing sialic acid as a marker compound that is naturally occurring at 7% concentration in GMP (glycomacropeptide). GMP is used worldwide in foodstuffs for babies and infants and is obtained from the milk protein as safe food. While the purpose of our detailed evaluation was aimed to assess preliminary NOAEL values for and above 2,000 mg/kg/day, a clinical dose allowance for 23%-GNANA (as per characteristic of a functional health product, a highly refined test substance of 23% (v/v) sialic acid combined in GMP), at the same time we also wanted to assess the safety of GMP hydrolyzate lacking sialic acid but with identical properties as GMP. Animal safety evaluation was conducted using 23%-GNANA as the test substance, produced from hydrolyzed whey protein powder (product name: HELICOBACTROL-23; provided by Medinutrol Inc. [Korea]; composed of 23% sialic acid and GMP protein) after isolating the sialic acid using enzymes approved as food additives, with GMP as a raw material, and subsequently increasing the content of xx up to 23% through 80% (v/v) ethanol soaking and concentrating, in accordance with GLP Guideline. The animal safety evaluation mentioned above was made on the basis of toxicity in SPF Sprague-Dawley female and male rats dosed with 10 mL of the test substance diluted to 0, 1,250, 2,500, and 5,000 mg/kg directly into their stomachs for 90 d. This was determined in terms of the general symptoms and animal viability, weight and amount of feed intake, eye examination, uracrasia tests, hematological and blood biochemical disorder tests, blood coagulation test, abnormal intestine weight, abnormalities during postmortem and histopathological examinations. Statistical significance was set at P<0.05. Based on the toxicity determination, a certain minor effect associated with the test substance was observed in male rats with no major effects of the tested substance, in comparison with the control group dosed with sterilized water. Nevertheless, the NOAEL value, evaluated as per toxicity criteria, was verified as 5,000 mg/kg/day (P<0.05). Similarly, for female rats, a certain minor effect associated with the test substance was observed in 5,000 mg/kg/day dosed group, with no major effect, yet the NOAEL value (as assessed as per toxicity criteria) was determined to be 5,000 mg/kg/day (P<0.05), which was the same as for male rats. Accordingly, the NOAEL values of the test substances for all female and male rats were finally verified as 5,000 mg/kg/day (P<0.05). In conclusion, it was determined that the 23%-GNANA test substance exceeds 2,000 mg/kg/day, the clinical allowance characteristic for functional health food, and was finally evaluated to cause no safety concerns when used as a raw material in functional health food production, which was the ultimate goal of the present study.

Development and Research into Functional Foods from Hydrolyzed Whey Protein Powder with Sialic Acid as Its Index Component - I. Repeated 90-day Oral Administration Toxicity Test using Rats Administered Hydrolyzed Whey Protein Powder containing Normal Concentration of Sialic Acid (7%) with Enzyme Separation Method - (Sialic Acid를 지표성분으로 하는 유청가수분해단백분말의 기능성식품 개발연구 - I. 효소분리로 7% Siailc Acid가 표준적으로 함유된 유청가수분해단백분말(7%)의 랫드를 이용한 90일 반복경구투여 독성시험 평가 연구 -)

  • Noh, Hye-Ji;Cho, Hyang-Hyun;Kim, Hee-Kyong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.99-116
    • /
    • 2016
  • We herein performed animal safety assessment in accordance with Good Laboratory Practice (GLP) regulations with the aim of developing sialic acid from glycomacropeptide (hereafter referred to as "GMP") as an index ingredient and functional component in functional foods. GMP is a type of whey protein derived from milk and a safe food, with multiple functions, such as antiviral activity. A test substance was produced containing 7% (w/w) sialic acid and mostly-hydrolyzed whey protein (hereafter referred to as "7%-GNANA") by enzymatic treatment of substrate GMP. The maximum intake test dose level was selected based on 5,000 mg/kg/day dose set for male NOEL (no-observed-effect-level) and female NOAEL (no-observed-adverse-effect-level) determined by a dose-range finding (DRF) test (GLP Center of Catholic University of Daegu, Report No. 15-NREO-001) that was previously conducted with the same test substance. To evaluate the toxicity of a repeated oral dose of the test substance in connection with the previous DRF study, 1,250, 2,500, and 5,000 mg/kg of the substance were administered by a probe into the stomachs of 6-week-old SPF Sprague-Dawley male and female rats for 90 d. Each test group consisted of 10 male and 10 female rats. To determine the toxicity index, all parameters, such as observation of common signs; measurements of body weight and food consumption; ophthalmic examination; urinalysis, electrolyte, hematological, and serum biochemical examination; measurement of organ weights during autopsy; and visual and histopathological examinations were conducted according to GLP standards. After evaluating the results based on the test toxicity assessment criteria, it was determined that NOAEL of the test substance, 7%-GNANA, was 5,000 mg/kg/day, for both male and female rats. No animal death was noted in any of the test groups, including the control group, during the study period, and there was no significant difference associated with test substance, as compared with the control group, with respect to general symptoms, body weight changes, food consumption, ophthalmic examination, urinalysis, hematological and serum biochemical examination, and electrolyte and blood coagulation tests during the administration period (P<0.05). As assessed by the effects of the test substance on organ weights, food consumption, autopsy, and histopathological safety, change in kidney weight as an indicator of male NOAEL revealed up to 20% kidney weight increase in the high-dose group (5,000 mg/kg/day) compared with the change in the control group. However, it was concluded that this effect of the test substance was minor. In the case of female rats, reduction of food consumption, increase of kidney weight, and decrease of thymus weight were observed in the high-dose group. The kidney weight increased by 10.2% (left) and 8.9% (right) in the high-dose group, with a slight dose-dependency compared with that of the control group. It was observed that the thymus weight decreased by 25.3% in the high-dose group, but it was a minor test substance-associated effect. During the autopsy, botryoid tumor was detected on the ribs of one subject in the high-dose group, but we concluded that the tumor has been caused by a naturally occurring (non-test) substance. Histopathological examination revealed lesions on the kidney, liver, spleen, and other organs in the low-dose test group. Since these lesions were considered a separate phenomenon, or naturally occurring and associated with aging, it was checked whether any target organ showed clear symptoms caused by the test substance. In conclusion, different concentrations of the test substance were fed to rats and, consequently, it was verified that only a minor effect was associated with the test substance in the high-dose (5,000 mg/kg/day) group of both male and female rats, without any other significant effects associated with the test substance. Therefore, it was concluded that NOAEL of 7%-GNANA (product name: Helicobactrol) with male and female rats as test animals was 5,000 mg/kg/day, and it thus was determined that the substance is safe for the ultimate use as an ingredient of health functional foods.