Development and Research on a Functional Hydrolyzed Whey Protein Powder Product with Sialic Acid as a Marker Compound - II. Repeated 90-day Oral Administration Toxicity Test using Rats Administered Whey Protein Powder containing Highly Concentrated Sialic Acid (23%) produced by Enzyme Separation and Solvent Enrichment Method -

Sialic Acid를 지표성분으로 하는 유청가수분해단백분말의 기능성식품 개발연구 - II. 효소분리 용매정제로 고농도 Sialic Acid가 함유된 유청가수분해단백분말(23%)의 랫드를 이용한 90일 반복경구투여 독성시험 평가 연구 -

  • Received : 2016.06.01
  • Accepted : 2016.06.22
  • Published : 2016.06.30

Abstract

The present study was performed to develop a functional raw food material from hydrolyzed whey protein powder (23%-GNANA) medication containing sialic acid as a marker compound that is naturally occurring at 7% concentration in GMP (glycomacropeptide). GMP is used worldwide in foodstuffs for babies and infants and is obtained from the milk protein as safe food. While the purpose of our detailed evaluation was aimed to assess preliminary NOAEL values for and above 2,000 mg/kg/day, a clinical dose allowance for 23%-GNANA (as per characteristic of a functional health product, a highly refined test substance of 23% (v/v) sialic acid combined in GMP), at the same time we also wanted to assess the safety of GMP hydrolyzate lacking sialic acid but with identical properties as GMP. Animal safety evaluation was conducted using 23%-GNANA as the test substance, produced from hydrolyzed whey protein powder (product name: HELICOBACTROL-23; provided by Medinutrol Inc. [Korea]; composed of 23% sialic acid and GMP protein) after isolating the sialic acid using enzymes approved as food additives, with GMP as a raw material, and subsequently increasing the content of xx up to 23% through 80% (v/v) ethanol soaking and concentrating, in accordance with GLP Guideline. The animal safety evaluation mentioned above was made on the basis of toxicity in SPF Sprague-Dawley female and male rats dosed with 10 mL of the test substance diluted to 0, 1,250, 2,500, and 5,000 mg/kg directly into their stomachs for 90 d. This was determined in terms of the general symptoms and animal viability, weight and amount of feed intake, eye examination, uracrasia tests, hematological and blood biochemical disorder tests, blood coagulation test, abnormal intestine weight, abnormalities during postmortem and histopathological examinations. Statistical significance was set at P<0.05. Based on the toxicity determination, a certain minor effect associated with the test substance was observed in male rats with no major effects of the tested substance, in comparison with the control group dosed with sterilized water. Nevertheless, the NOAEL value, evaluated as per toxicity criteria, was verified as 5,000 mg/kg/day (P<0.05). Similarly, for female rats, a certain minor effect associated with the test substance was observed in 5,000 mg/kg/day dosed group, with no major effect, yet the NOAEL value (as assessed as per toxicity criteria) was determined to be 5,000 mg/kg/day (P<0.05), which was the same as for male rats. Accordingly, the NOAEL values of the test substances for all female and male rats were finally verified as 5,000 mg/kg/day (P<0.05). In conclusion, it was determined that the 23%-GNANA test substance exceeds 2,000 mg/kg/day, the clinical allowance characteristic for functional health food, and was finally evaluated to cause no safety concerns when used as a raw material in functional health food production, which was the ultimate goal of the present study.

본 시험은 sialic acid가 23%를 함유하도록 제조한 유청가수분해단백분말제제(whey protein of hydrolysis)의 기능성 식품원료로 개발을 위한 동물안전성을 평가에 연구목표를 두었다. 시험물질은 sialic acid 23%(v/v)와 원료인 GMP(glycomacropeptide)가수분해 단백질이 87%(v/v)로 구성되어 있었다(시험명: 23%-GNANA). 시험물질의 독성 유무는 한국식품의약안전청(KFDA, 2014)과 OECD(2008)의 의약품 등의 독성시험 기준에 따라 실시하였다. 평가방법으로서, 시험물질의 투여용량을 0, 1,250, 2,500 및 5,000 mg/kg/day하여 SPF Sprague-Dawley 계열 암수 랫드에 90일 동안 반복경구투여하였을 때 나타나는 독성 여부를 평가하였다. 평가항목으로서는 사망률, 일반증상관찰, 체중 변화, 사료섭취량 측정, 안검사, 요검사, 혈액학적 및 혈액생화학적 검사, 부검 시 장기의 중량 측정, 부검 시 육안적 및 조직병리학적 검사 등을 평가하였다. 결과로서, 시험물질로 인한 일반증상 및 사망동물은 발생하지 않았다. 또한, 안과학적 검사, 요검사 그리고 혈액학적 및 혈액이화학적 이상 여부와 부검 시 육안적 검사 및 조직병리학적 검사에서 대조군 대비 특이한 변화는 관찰되지 않았다(P<0.05). 이외의 평가 항목에서, 암컷은 사료섭취량과 증체율이 다소 감소하였고, 그리고 수컷에서는 요의 SG와 PRO 및 고환 무게가 다소 증가하는 경향을 보였지만, 시험물질-유래 경미한 변화(non-adverse effect)가 고용량군(5,000 mg/kg/day)만 확인되었다. Weight-based classification(독성 강도에 따른 분류)를 적용한 최종 독성평가 결과는 다음과 같다. 수컷의 경우, NOEL(No Observed Effect Level)은 5,000 mg/kg/day 그리고 암컷의 경우는 NOAEL(No Observed Adverse Effect Level)은 5,000 mg/kg/day로 최종 확인되었다. 따라서, 암수 모두에서 시험물질의 NOAEL은 투여최대용량인 5,000 mg/kg/day로 확인되었다. 결론적으로, 시험물질인 유청가수분해단백분말제제는 건강기능식품의 특성상 임상허용용량인 1,000 mg/kg/day의 5배 수준에서 안전함을 확인되었다.

Keywords

References

  1. Brody, E. P. 2000. Biological activities of bovine glyco-macropeptide. British Journal of Nutrition. 84:S39-S46.
  2. Boorman, G. A. et al. 2006. Pathology of the fischer rat. Academic Press, INC., pp.132-134.
  3. Gikins, Mary L. A. 2006. Clinical laboratory parameters for Crl:CD (SD) rats. Charles River Laboratories.
  4. Gorog, P. and Kovacs, I. B. 1978. Anti-inflammatory effect of sialic acid. Agents and Actions. 8:543-545. https://doi.org/10.1007/BF02111443
  5. Iijima, R., Takahashi, H., Namme, R., Ikegami, S. and Yamazaki, M. 2004. Novel biological function of sialic acid (N-acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Letters 561:163-166. https://doi.org/10.1016/S0014-5793(04)00164-4
  6. Ishikawa, M. and Koizumi, S. 2010. Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli. Carbohydrate Research 345:2605-2609. https://doi.org/10.1016/j.carres.2010.09.034
  7. Keenan, C., Elmore, S., Francke-Carroll, S., Kemp, R., Kerlin, R., Peddada, S. and Pletcher, J. 2009. Best practices for use of historical control data of proliferative rodent lesions. Toxicol. Pathol. 37:679-693. https://doi.org/10.1177/0192623309336154
  8. Lewis, R. W., Billington, R., Debryune, E., Gamer, A., Lang, B. and Carpanini, F. 2002. Recognition of adverse and nonadverseeffects in toxicity studies. Toxicologic Pathology 30:66-74. https://doi.org/10.1080/01926230252824725
  9. Ministry of Food and Drug Safety (KFDA) Notice No. 2014-136 (Jul. 30, 2014) 'Guidelines for toxicity tests in drugs, etc.' KFDA Notice No. 2014-67 (Feb. 12, 2015).
  10. Moon, Y. I., Lee, W. J. and Oh, S. 2005. Glycomacropeptide hydrolysed from bovine ${\kappa}$-casein: II. Chromatographic changes of ${\kappa}$-casein macropeptide as related to trichloroacetic acid concentration. Korean J. Food Sci. Ani. Resour. 17(1): 478-482.
  11. Oh, S. J., Kim, S. H., Jeon, W. M., Kim, B. C. and Ki, Y. K. 1997. Glycomacropeptide hydrolysed from bovin ${\kappa}$-casein: I. The fractionation of glycomacropeptide. Korean J. Food Sci. Ani. Resour. 17(1):51-57.
  12. Organization for Economic Co-operation and Development (OECD). 2008. OECD guidelines 408 for the testing of chemicals: Repeated Dose 90 day oral toxicity study in oodents Organization for Economic Co-operation and Development. Paris, France. pp.1-10.
  13. Park, Y. C. and Cho, M. H. 2011. A new way in deciding NOAEL based on the findings from GLP-toxicity test. Toxicology Research 27:133-135. https://doi.org/10.5487/TR.2011.27.3.133
  14. Springer-Verlag, R. S. 1984. Sialic acids: Chemistry, metabolism and function. Carbohydrate Research 129:5-7. https://doi.org/10.1016/0008-6215(84)85324-0
  15. United States of Food and Drug Administration (USFDA). 2005. Guidance for industry estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Pharmacology and Toxicology. United States of Food and Drug Administration. Rockville. MD, USA. pp.5-6.
  16. Wang, B. 2009. Sialic acid is and essential nutrient for brain development and cognition. Annu. Rev. Nutr. 29:177-222. https://doi.org/10.1146/annurev.nutr.28.061807.155515
  17. Wang, B. and Brand-Miller, J. 2003. The role and potential of sialic acid in human nutrition. European Journal of Clinical Nutrition. 57:1351-1369. https://doi.org/10.1038/sj.ejcn.1601704
  18. Wang, B., Brand-Miller, J., McVeagh, P. and Petocz, P. 2001. Concentration and distribution of sialic acid in human milk and infant formulas1-3. Am. J. Clin. Nutr. 74:510-515. https://doi.org/10.1093/ajcn/74.4.510
  19. Wang, B., Yu, B., Karim, M., Hu, H. S., McGreevy, Y., Petocz, H. P., Held, S. and Miller, J. B. 2007. Dietary sialic acid supplementation improves learning and memory in piglets1-3. Am. J. Clin. Nutr. 85:561-569. https://doi.org/10.1093/ajcn/85.2.561
  20. Yoon, Y. C., Cho, J. K., Song, C. H., Lee, S. and Chung, C. I. 2000. Purification of the glycomacropeptide from cheese whey. Korean J. Food SCI. ANI. Resour. 20:159-165.
  21. Zimmermann, V., Hennemann, H. G., Daussmann, D. and Kragl, U. 2007. Modelling the reaction course of N-acetylneuraminic acid synthesis from N-acetyl-D-glucosamine new strategies for the optimisation of neuraminic acid synthesis. Appl. Microbiol. Biotechnol. 76:597-605. https://doi.org/10.1007/s00253-007-1033-6