• Title/Summary/Keyword: 생물전환반응

Search Result 186, Processing Time 0.03 seconds

Optimization of the Expression of the Ferritin Protein Gene in Pleurotus eryngii and Its Biological Activity (큰느타리버섯에서 석충 페리틴 단백질 유전자의 발현 최적화 및 생물학적 활성)

  • Woo, Yean Jeong;Oh, Si Yoon;Choi, Jang Won
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.359-371
    • /
    • 2019
  • To optimize the expression and secretion of ferritin protein associated with ion storage in the mushroom, Pleurotus eryngii, a recombinant secretion vector, harboring the ferritin gene, was constructed using a pPEVPR1b vector under the control of the CaMV 35S promoter and signal sequence of pathogen related protein (PR1b). The ferritin gene was isolated from the T-Fer vector following digestion with EcoRI and HindIII. The gene was then introduced into the pPEVPR1b secretion vector, and it was then named pPEVPR1b-Fer. The recombinant vector was transferred into P. eryngii via Agrobacterium tumefaciens-mediated transformation. The transformants were selected on MCM medium supplemented with kanamycin and its expression was confirmed by SDS-PAGE and western blotting. Expression of ferritin protein was optimized by modifying the culture conditions such as incubation time and temperature in batch and 20 L airlift type fermenter. The optimal conditions for ferritin production were achieved at 25℃ and after incubating for 8 days on MCM medium. The amount of ferritin protein was 2.4 mg/g mycelia, as measured by a quantitative protein assay. However, the signal sequence of PR1b (32 amino acids) seems to be correctly processed by peptidase and ferritin protein may be targeted in the apoplast region of mycelia, and it might not be secreted in the culture medium. The iron binding activity was confirmed by Perls' staining in a 7.5% non-denaturing gel, indicating that the multimeric ferritin (composed of 24 subunits) was formed in P. eryngii mycelia. Mycelium powder containing ferritin was tested as a feed additive in broilers. The addition of ferritin powder stimulated the growth of young broilers and improved their feed efficiency and production index.

Catalytic Hydrodeoxygenation of Biomass-Derived Oxygenates: a Review (바이오매스 유래 함산소 화합물의 수첨탈산소 촉매 반응: 총설)

  • Ha, Jeong-Myeong
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.174-181
    • /
    • 2022
  • Biomass is a sustainable alternative resource for production of liquid fuels and organic compounds that are currently produced from fossil fuels including petroleum, natural gas, and coal. Because the use of fossil fuels can increase the production of greenhouse gases, the use of carbon-neutral biomass can contribute to the reduction of global warming. Although biological and chemical processes have been proposed to produce petroleum-replacing chemicals and fuels from biomass feedstocks, it is difficult to replace completely fossil fuels because of the high oxygen content of biomass. Production of petroleum-like fuels and chemicals from biomass requires the removal of oxygen atoms or conversion of the oxygen functionalities present in biomass derivatives, which can be achieved by catalytic hydrodeoxygenation. Hydrodeoxygenation has been used to convert raw biomass-derived materials, such as biomass pyrolysis oils and lignocellulose-derived chemicals and lipids, into deoxygenated fuels and chemicals. Multifunctional catalysts composed of noble metals and transition metals supported on high surface area metal oxides and carbons, usually selected as supports of heterogeneous catalysts, have been used as efficient hydrodeoxygenation catalysts. In this review, the catalysts proposed in the literature are surveyed and hydrodeoxygenation reaction systems using these catalysts are discussed. Based on the hydrodeoxygenation methods reported in the literature, an insight for feasible hydrodeoxygenation process development is also presented.

Characterization of CO2 Biomineralization Microorganisms and Its Mineralization Capability in Solidified Sludge Cover Soil in Landfill (매립지 복토용 슬러지 고화물내 이산화탄소 생광물화 고정균 분석 및 생광물화능 평가)

  • Ahn, Chang-Min;Bae, Young-Shin;Ham, Jong-Heon;Chun, Seung-Kyu;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.598-606
    • /
    • 2013
  • This study was performed to determine whether biomineralization microbes were actively present underneath landfill cover soil producing biocalcification. From this, various types of microbes were observed. Among them, two species were dominantly found; Bacillus megaterium and Alkaliphilus metalliredigens that were known as biominerlization bacteria. With those microbes, $CO_2$ was more highly consumed than without bacteria. In response, the calcium carbonate mineral was produced at 30% (wt) greater than that of the control. At the same time, TG-DTA was successfully used for quantification of $CO_2$ consumed forming calcium carbonate minerals resulting from biocalcification. It was decided that the presence of solidified sewage sludge cake utilized as a cover soil in the landfill could efficiently contribute to possible media adaptably and naturally sequestering $CO_2$ producing from the landfill.

Significance of Dissimilatory Fe(III) Reduction in Organic Matter Oxidation and Bioremediation of Environmental Contaminants in Anoxic Marine Environments (혐기성 해양환경에서 철 환원세균에 의한 유기물 분해 및 생물정화)

  • Hyun Junc-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.145-153
    • /
    • 2005
  • I reviewed an ecological and environmental significance of microbial carbon respiration coupled to dis-similatory reduction of fe(III) to Fe(II) which is one of the major processes controlling mineralization of organic matter and behavior of metals and nutrients in various anaerobic environments. Relative significance of Fe(III) reduction in the mineralization of organic matter in diverse marine environments appeared to be extremely variable, ranging from negligible up to $100\%$. Cenerally, Fe(III) reduction dominated anaerobic car-bon mineralization when concentrations of reactive Fe(III) were higher, indicating that availability of reactive Fe(III) was a major factor determining the relative significance of Fe(III) reduction in anaerobic carbon mineralization. In anaerobic coastal sediments where $O_2$ supply is limited, tidal flushing, bioturbation and vegetation were most likely responsible for regulating the availability of Fe(III) for Fe(III) reducing bacteria (FeRB). Capabilities of FeRB in mineralization of organic matter and conversion of metals implied that FeRB may function as a useful eco-technological tool for the bioremediation of anoxic coastal environments contaminated by toxic organic and metal pollutants.

Anaerobic Digestion Efficiency of Remainder from Bacterial Cellulose Production Process using Food Wastes (음식 폐기물을 이용한 박테리아 셀룰로오스 생산 공정 잔류물의 혐기성 소화효율)

  • Jin, Sheng-De;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 2007
  • This study was performed to examine the availability of anaerobic digestion of the remainders caused by bacterial cellulose production process using food wastes. They maybe to be considered as others second pollution sources. Thus, this study was targeted to minimize content of organic material and to obtain more energy in those remnants using two-phase UASB reactor. The working volume of first hydrolysis fermentor was 35 L (total 55 L) and the second methane fermentor was 40 L (total 50 L). The organic loading rate of hydrolysis fermentor was 3 g-VS/L${\cdot}$day and 25,000 ppm of $COD_{cr}$ for methane fermentor. The hydraulic retention time was 18 days for hydrolysis reactor and 33 days for methane reactor. The hydrolysis reactor and methane reactor were performed at 35, 40$^{\circ}C$ respectively. For the efficient stable performance, the composition of organic wastes at each stage was as follow; Food waste with bacterial culture remnants (1 : 1), bacterial cellulose remnants, bacterial cellulose culture remnants with food wastes saccharified solids (1 : 1). When the anaerobic digestion was performed stably at each stage, the COD removal efficiency was 88, 90, 91 % respectively. At this time, methane production rate was 0.26, 0.34, $0.32m^3\;CH_4/kg-COD_{remove}$. As well as the values of anaerobic digestion at third stage were more higher than values of anaerobic digestion using food wastes. It is clearly to say that the food wastes zero-emission system constructed in our lab is more efficient way to treat and reclaim food wastes.

Production of hTPO Transgenic Chickens using Tetracycline-Inducible Expression System (Tetracycline-Inducible Expression System을 이용한 Human Thrombopoietin (hTPO) 형질전환 닭의 생산)

  • Kwon, M.S.;Koo, B.C.;Kim, D.H.;Kim, M.J.;Kim, T.
    • Korean Journal of Poultry Science
    • /
    • v.36 no.2
    • /
    • pp.177-186
    • /
    • 2009
  • It is well-known that unregulated over-expression of foreign gene may have unwanted physiological or toxic effects in transgenic animals. To circumvent these problems, we constructed retrovirus vector designed to express the foreign gene under the control of the tetracycline-inducible promoter. However, gene expressions in the tetracycline-inducible expression system (Tet system) are not completely regulated but a little leaky due to the inherent defects in conventional Tet-based systems. A more tightly controllable regulatory system can be achieved when the advanced versions ($rtTA2^SM2$) of rtTA and a minimal promoter in responsive components (pTRE-tight) are used in combination therein. In this study, we tried to produce human thrombopoietin (hTPO) from various target cells and transgenic chickens using the retrovirus vector combined with Tet system. hTPO is the primary regulator of platelet production and has an important role in the survival and expansion of hematopoietic stem cells. In a preliminary experiment in vitro, higher hTPO expression and tighter expression control were observed in chicken embryonic fibroblast (CEF) cells. We also measured the biological activity of the hTPO using Mo7e cells whose proliferation is dependant on hTPO. The biological activity of the recombinant hTPO from CEF was higher than both its commercial counterpart and hTPO from other target cells. The recombinant retrovirus was injected beneath the blastoderm of non-incubated chicken embryos (stage X). Out of 138 injected eggs, 15 chicks hatched after 21 days of incubation. Among them, 8 hatched chicks were hTPO positive. When the Go transgenic chicken was fed doxycycline (0.5 mg per 1 gram of feed), a tetracycline derivative, hTPO concentration of the transgenic chicken blood was 200 ng/mL. Germline transmission of the transgene was confirmed in sperm of the Go transgenic roosters. These results are informative to establish transgenic chickens as bioreactors for the mass production of commercially valuable and biological active human cytokine proteins.

Characteristics of Methanol Production Derived from Methane Oxidation by Inhibiting Methanol Dehydrogenase (메탄올탈수소효소 저해시 메탄산화에 의한 메탄올 전환생성 특성)

  • Yoo, Yeon-Sun;Han, Ji-Sun;Ahn, Chang-Min;Min, Dong-Hee;Mo, Woo-Jong;Yoon, Soon-Uk;Lee, Jong-Gyu;Lee, Jong-Yeon;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.662-669
    • /
    • 2011
  • This study was conducted to biologically convert methane into methanol. Methane contained in biogas was bio-catalytically oxidized by methane monooxygenase (MMO) of methanotrophs, while methanol conversion was observed by inhibiting methanol dehydrogenase (MDH) using MDH activity inhibitors such as phosphate, NaCl, $NH_4Cl$, and EDTA. The degree of methane oxidation by methanotrophs was the most highly accomplished as 0.56 mmol for the condition at $35^{\circ}C$ and pH 7 under 0.4 (v/v%) of biogas ($CH_4$ 50%, $CO_2$ 50%) / Air ratio. By the inhibition of 40 mM of phosphate, 50 mM of NaCl, 40 mM of $NH_4Cl$ and $150{\mu}m$ of EDTA, methane oxidation rate could achieve more than 80% regardless of type of inhibitors. In the meantime, addition of 40 mM of phosphate, 100 mM of NaCl, 40 mM of $NH_4Cl$ and $50{\mu}m$ of EDTA each led to generating the highest amount of methanol, i.e, 0.71, 0.60, 0.66, and 0.66 mmol when 1.3, 0.67, 0.74, and 1.3 mmol of methane was each concurrently consumed. At that time, methanol conversion rate was 54.7, 89.9, 89.6, and 47.8% respectively, and maximum methanol production rate was $7.4{\mu}mol/mg{\cdot}h$. From this, it was decided that the methanol production could be maximized as 89.9% when MDH activity was specifically inhibited into the typical level of 35% for the inhibitor of concern.

Characteristics of Predation of Neoseiulus fallacis (Acarina: Phytoseiidae) on Panonychus citri (Acari: Tetranychidae) (귤응애에 대한 팔라시스이리응애의 포식특성)

  • Kim, Dong-Hwan;Kim, Sang-Soo;Kim, Kwang-Sik;Hyun, Jae-Wook
    • Korean journal of applied entomology
    • /
    • v.45 no.2 s.143
    • /
    • pp.145-152
    • /
    • 2006
  • Predation of Neoseiulus fallacis was observed for biological control of Panonychus citri that is one of the major insect pests on citrus. The daily predation of development stages of P. citri by an adult female of N. fallacis were 20.1 eggs, 26.1 larvae, 18.2 protonymphs, and 7.4 deutonymphs at 25$^{\circ}C$, The daily predation of P. citri eggs by N, fallacis was observed under different temperatures. The predation was increased as the temperature rise. At this time, ratio of eggs production of l! fallacis after predation of P. citri eggs (number of eggs N. fallacis/number of eggs P. citri consumed by N. fallacis) was 0.09. The daily predation of P. citri eggs by N, fallacis was 21.1, 17.3, and 16.7 on the different arenas (diameter: 20, 40, and 60 mm), respectively. The predation was decreased as the arena of the leaf increase. The functional response of M fallacis to P. citri showed Holling's Type II response: the consumption of prey by N. fallacis increased as the density of prey increase but increasing rate was gradually reduced. As the result, it seemed that N. fallacis can be use for biological control of P. citri.

Enzymatic Biodiesel Synthesis from Canola Oil in Liquid Carbon Dioxide (액체 이산화탄소 조건에서의 캐놀라 오일 유래의 효소적 바이오디젤 생산)

  • Lee, Myung-Gu;Park, Chul-Hwan;Cho, Jae-Hoon;Lee, Jun-Hak;Lee, Do-Hoon;Kim, Sang-Yong
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.337-343
    • /
    • 2010
  • It has been well known that organic solvents like t-butanol and n-hexane can protect lipases from the inhibition by short-chain alcohols in the enzymatic transesterification. However, use of the organic solvents should be minimized considering their negative effects on environment and human health. Therefore, use of the greener solvents has been pursued in various are as including the enzymatic biotranformation. In this study, the liquid carbon dioxide ($LCO_2$) was employed as an alternative media for the enzymatic transesterification of canola oil. The conversion in the $LCO_2$ was comparable with those in organic solvents and the supercritical carbon dioxide, and under optimum conditions, the value reached 99.7%. It is expected that this method can provide a new type of biodiesel production process with higher energy efficiency and lower environmental impact.

Evaluation of different types of mixed microbial culture for biomethanation of CO2 (식종슬러지 종류에 따른 이산화탄소 이용 바이오메탄 생산 비교)

  • Kim, Tae-Hoon;Lim, Byung-Seo;Yi, Sung-Ju;Yun, Gwang-Sue;Ahn, Byung-Kyu;Enkhtsog, Michidmaa;Yun, Yeo-Myeong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2020
  • The aims of this study were to compare the biomethanation of CO2 through specific methanogenic activity (SMA) test which was inoculated with four different types of mixed microbial culture obtained from full-scale anaerobic digestion (AD) plants. The experimental results showed that CH4 conversion was the highest in the samples inoculated by seed sludge taken from ADs of food waste and brewery; under this condition, the produced biomethane contains 89.3-91.9% of CH4. Meanwhile, the lowest level was obtained in the sample from sewage sludge. The measured ratio of CH4 production rate to CO2 consumption rate in all reactors was higher than the theoretical value (1) in the middle of the period and soon dropped to 0.7-0.8. It might be due to changed metabolic pathways in the reactor by the degradation of residual organic matter and the increased activity of homoacetogenic bacteria.