• Title/Summary/Keyword: 생물막 공정

Search Result 177, Processing Time 0.031 seconds

Effect of Temperature on the Nitrogen Removal of Municipal Wastewater in a Pilot-scale Moving Bed Biofilm Reactor with Waste-tire Media (폐타이어 담체를 이용한 파일럿 규모 유동상 생물막 공정에서 하수의 질소제거에 미치는 온도 영향)

  • Park, Woon-Ji;Ahn, Johng-Hwa;Lee, Chan-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.507-516
    • /
    • 2008
  • This research was conducted to elucidate the effect of temperature on the nitrogen removal of municipal wastewater with waste-tire media. The experiments were carried out in laboratory-scale batch reactor and pilot-scale moving bed biofilm reactor filled at a 0.15 filling ratio with waste-tire media, respectively. In batch tests, specific nitrification rate(SNR) with media was 3.4 mg NH$_4^+$-N/g Mixed-Liquor Volatile Suspended Solid(MLVSS)$\cdot$hr, compared with 1.7 mg NH$_4^+$-N/g MLVSS$\cdot$hr without media. In pilot-scale test with media, total nitrogen removal efficiency increased from 53 $\pm$ 8% to 76 $\pm$ 5% as the temperature increased from 9$\sim$10$^{\circ}C$ to 20$\sim$24$^{\circ}C$. At the temperature of 9$\sim$10$^{\circ}C$, 10$\sim$20$^{\circ}C$, and 20$\sim$24$^{\circ}C$, the SNRs were 0.8 $\pm$ 0.5, 3.1 $\pm$ 1.9, and 3.4 $\pm$ 2.1 mg NH$_4^+$-N/g MLVSS$\cdot$hr and the specific denitrification rates(SDNR) were 0.6 $\pm$ 0.2, 1.1 $\pm$ 0.6, 1.4 $\pm$ 0.6 mg NO$_3^-$-N/g MLVSS.hr, respectively. The overall activities of biomass in anaerobic, anoxic, and oxic zones at 20$\sim$24$^{\circ}C$ increased to 22, 20, and 15%, compared with those at 9$\sim$10$^{\circ}C$, respectively. The activity distribution of Nitrosomonas and Nitrobacter also increased with the increase of temperature.

Water Quality Improvement of Stagnant Water using an Upflow Activated Carbon Biofilm Process and Microbial Community Analysis (상향류 활성탄 생물막 공정을 이용한 정체 수역 수질 개선 및 공정 내 미생물 군집 해석)

  • Oh, Yu-Mi;Lee, Jae-Ho;Park, Jeung-Jin;Choi, Gi-Choong;Park, Tae-Joo;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.23-32
    • /
    • 2010
  • The capacity of natural purification was limited by the interruption of natural flow and the problems such as eutrophication were occurred by nutritive salts accumulation in stagnant stream. Moreover, the inflow of non-point sources causes non-degradable materials to increase in stagnant stream. In this study, an upflow biological activated carbon (BAC) biofilm process comprised of anoxic, aerobic 1, and aerobic 2 reactors were introduced for treatment of stagnant stream and SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN, and TP were monitored in the upflow BAC biofilm reactors with continuous cycling. In order to simulate stagnant stream, the lake water of amusement park and golf course were stored as influent in a tank of $2m^3$ and hydraulic retention time (HRT) was changed into 6, 4, and 2 hours. At HRT 4hr and the lake water of amusement park as influent, the removal efficiencies of SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN, and TP showed the best water quality improvement and were 69.8, 83.0, 91.3, 74.1, 74.7, and 88.9%, respectively. At HRT 4hr and the lake water of golf course as influent, the removal efficiencies of SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN and TP were 78.5, 78.0, 80.2, 74.9, 55.6 and 97.5%, respectively. As the results of polymerase chain reaction - denaturing gel gradient electrophoresis (PCR-DGGE), microbial community was different depending on influent type. Fluorescence in situ hybridization (FISH) showed that nitrifying bacteria was dominant at HRT 4 hr. The biomass amount and microbial activities by INT-DHA test were not decrease even at lower HRT condition. In this study, the upflow BAC biofilm process would be considered to the water quality improvement of stagnant stream.

Evaluation of particulate removal in slow sand filtration processes (완속여과 공정에서 전처리 공정 도입에 따른 입자제거 효율평가)

  • Kim, Seong-Su;Bae, Chul-Ho;Park, No-Suk;Kang, Suk-Hyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.461-466
    • /
    • 2008
  • Because of their simplicity, efficiency, and economy, slow sand filters are appropriate means of water treatment for small water systems. In this study, the effect of filtration velocity and dirty skin (Schmutzdecke) was evaluated on the performance of turbidity removal. Also, removal characteristics of particulate were investigated in the case of the usage of non-woven fabric on the surface of sand and the application of PCF as pretreatment process. Comparative column tests were carried out for the various operation condition. From the result of column tests, filtration velocity had little effect on the turbidity removal rate. The formation of algal biofilm on the surface of media is helpful in turbidity removal, while non-woven fabric is not as effective as expected. The relative contribution of biomass and accumulated particulates to head loss development in slow sand filters requires further study.

Modeling and Characteristics of Ethanol Fermentation Process Combined with Pervaporation (투과증발과 결합된 에탄올 발효 공정의 모델링 및 특성)

  • 최은수;김진현;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.451-458
    • /
    • 1992
  • Pervaporation which is capable of removing ethanol selectively was adopted to reduce the ethanol inhibition and in situ recovery of ethanol in ethanol fermentation, The composite membrane made of silicone and polysulfone was used to separate the ethanol selectively. The ethanol selectivity of the membrane was about 4 and the total flux was 300 g/m2 h at 301:: and 10 mmHg for 25 g/l of feed concentration. Saccharomyces cerevisiae entrapped within Ca-alginate gels was employed for ethanol fermentations in a fluidized-bed bioreactor. The pervaporation membrane unit and fluidized-bed bioreactor were combined into one system. The proposed model equations for the combined system showed good accordances with the experimental results. It was found from the simulation results that the ethanol concentration in the broth for the combined system was lower than that for the continuous fermentation system without a membrane unit. Ethanol productivity can be thus increased by employing the combined system.

  • PDF

Trench 형성 및 High-k 물질의 적층을 통한 고출력 특성 EIS pH센서 제작

  • Bae, Tae-Eon;Jang, Hyeon-Jun;Jeong, Hong-Bae;Lee, Yeong-Hui;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.238-238
    • /
    • 2011
  • Ion sensitive field effect transistor (ISFET)는 용액의 이온 농도를 측정하는 반도체 센서로, 1970년 Bergveld에 의해 처음으로 제안되었다. ISFET가 제안된 이래로, 제조공정이 간단하고 감지막의 감지 특성 평가가 용이한 electrolyte-insulator-semiconductor (EIS) pH센서 또한 지속적으로 연구되었다. EIS pH센서는 작은 소자 크기, 견고한 구조, 빠른 응답속도와 CMOS공정과의 호환성이 좋다는 장점이 있다. EIS 또는 ISFET 센서를 이용하여 생물학적 요소의 신호 감지 특성을 평가함에 있어 소자의 signal to noise 비율이 우수해야 한다. EIS pH센서의 높은 signal to noise 비율을 얻기 위해, 소자의 표면적을 증가시키거나 감지막으로 유전상수가 높은 물질을 사용하여 출력 특성을 향상시켜야 한다. 본 연구에서는 trench구조와 SiO2/HfO2/Al2O3 (OHA) 적층 감지막을 갖는 EIS pH센서를 제작하여 출력 특성을 증가시키는 실험을 실시하였다. 120 nm, 380 nm, 780 nm의 다양한 깊이를 가진 trench를 형성하였으며, trench 깊이에 따른 출력특성을 비교하였다. 또한, 제작된 EIS 소자의 pH감지 특성을 분석하였다. 제작된 EIS소자의 감지막 중 SiO2는 Si와 high-k물질의 계면 상태를 보완하기 위한 완충막으로 성장되었고, HfO2는 높은 유전상수를 가지고 있어 signal to noise 비율을 향상시키는 물질로 증착되었다. 최종적으로 Al2O3는 pH용액과의 화학적 손상을 막기 위한 물질로 증착되었다. 실험 결과, trench 깊이가 깊어질수록 출력값이 증가하였고 이는 signal to noise 비율이 향상되는 것을 의미한다. 결론적으로 trench 형성을 통한 표면적 증가와 high-k물질을 적층한 감지막으로 인해 높은 출력 특성을 갖는 우수한 EIS 바이오센서를 제작할 수 있었다.

  • PDF

Comparison of Metabolic Fingerprintings between Biofilm and Aeration Tanks of RABC System for Food Wastewater Treatment (식품폐수처리 RABC system의 생물막과 포기조 대사지문 비교)

  • Lee, Dong-Geun;Yoo, Ki-Hwan;Sung, Gi-Moon;Park, Seong-Joo;Lee, Jae-Hwa;Ha, Bae-Jin;Ha, Jong-Myung;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.349-355
    • /
    • 2009
  • Metabolic fingerprinting of microbial communities was investigated with Biolog GN2 plates using samples of biofilm and aeration tanks from an RABC (rotating activated Bacillus contactor) system - an advanced wastewater treatment system for the food wastewater of pig slaughterhouses. Aerobic and anaerobic results revealed the following four aspects. First, simple matching and pairs t-test of daily variation showed more defined qualitative and quantitative relatedness of active microbial communities than that of mere optical densities. Second, metabolic potentials were higher in biofilm than in aeration tanks (p<0.01), meaning higher activity of biofilm. Third, two aeration tanks showed the highest similarity (78%) and similar metabolic power (p=0.287). However, actively used carbon sources were different among samples, signifying change of active communities at each wastewater treatment step. Finally, aerobic and anaerobic metabolic fingerprinting patterns were different for the same samples representing activities of microaerophilic and/or anaerobic communities. These results suggest that daily variation and anaerobic incubation would help in the comparison of metabolic fingerprintings.

Application of a fouling resistant microfiltration membrane in activated sludge process (막오염 저항성이 우수한 정밀여과막의 생물학적 처리공정 적용)

  • Myoung, Su-Wan;Park, In-Hwan;Kim, In-Chul;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.140-143
    • /
    • 2004
  • Membrane bioreactors (MBRs) used for water purification are based on the association of a bioreactor, within which a culture of microorganisms degrades the polluting compounds, and a membrane filtration separator. The use of a porous barrier usually ensures the disinfection of the effluent.(omitted)

  • PDF

The Application of RO Membrane System in Municipal Wastewater Reclamation (RO Membrane System을 이용한 도시하수처리)

  • 이규현;안준수;유제강
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.78-95
    • /
    • 1991
  • Water factory 21(WF 2) in Orange County California, is a advanced wastewater treatment(AWT) plant designed to reclaim biologically treated munidpal wastewater for injection into a seawater barrier system. Processes included are lime treatment air stripping, filtration, activated carbon adsorption, reverse osmosis(RO), and chlorination. The effectiveness of each treatment process is presented including pretreatment, RO dimineralization. The data collected show that the processes, including RO, used at WF-21 are capable of producing a very high quality water on a reliable basis. Treatment reduced all contaminants, to levels below national primary drinldng water regulation maximum contaminant levels. It was found that lime clarified secondary effluent can be used as feedwater to a RO dimineralizer. Experiments with new low pressure membrane(250psi) show great potential for reducing RO cost.

  • PDF

Forward Osmosis Technology for Concentrating the Heavy Water (중수 농축을 위한 정삼투 기술)

  • Chul Ho Park;Seong Bae Cho;Ook Choi
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.70-76
    • /
    • 2023
  • Heavy water (D2O) can induce various biochemical changes in comparison with light water (H2O). In order to reduce excessive energy consumption, which is a disadvantage of the existing separation process, we conduct the forward osmosis with electrospun polyamide membranes. NaCl and phosphoric acid were used as draw solutions. FT-IR spectroscopy was used to quantify the concentration of heavy water. It was observed that phosphoric acid could concentrate heavy water through a forward osmosis process and its special interaction with hydrogen/deuterium (H/D) was spectrophotometrically confirmed.

Characterization of Quorum-Quenching Bacteria Isolated from Biofouled Membrane Used in Reverse Osmosis Process (Biofouling이 일어난 역삼투막에서 분리한 쿼럼 저해 세균의 특성)

  • Moon, Sooyoung;Huang, Xinxin;Choi, Sung-Chan;Oh, Young-Sook
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.128-136
    • /
    • 2014
  • Acyl homoserine lactone (AHL) lactonase has been proved to be the AHL-degrading enzyme with the highest substrate specificity for AHL molecules and has shown a considerable potential as low-cost and efficient quorum quenching (QQ) technique. However, few studies focused on its inhibitory effect on biofilm formation which is also a quorum sensing (QS)-regulated phenomenon. In this study, QQ activity of six isolates from biofouled reverse osmosis membranes was studied using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NTL4 as biosensors under various conditions. All of the isolates belonged to the genus Bacillus and showed QQ activity regardless of the acyl chain length or substitution of AHL molecule. The isolates were capable of significantly inhibiting biofilm formation (46.7-58.3%) by Pseudomonas aeruginosa PAO1 and produced heat-sensitive extracellular QQ substances. The LC-MS analysis of the QQ activity of a selected isolate, RO1S-5, revealed the degradation of N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12 AHL) and the production of corresponding acyl homoserine (3-oxo-C12-HS), which indicated the activity of AHL lactonase. The broad AHL substrate range and high substrate specificity suggested that the isolate would be useful for the control of biofilm-related pathogenesis and biofouling in industrial processes.