• Title/Summary/Keyword: 샛기둥

Search Result 7, Processing Time 0.016 seconds

A Study on The Comparison of Mechanical Property Between The Staggered Stud Wood Wall and The Standard Wood Frame Wall (일반벽체와 교호 샛기둥 벽체의 역학적 성능 비교 연구)

  • Shim, Jae-Kwang;Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.640-649
    • /
    • 2017
  • A comparative research on the traditional standard wood walls and other light-frame wood walls is necessary to expand the base of wooden buildings and improve consumer satisfaction. Therefore, in this research we looked for new possibilities through comparison of performance between standard wood wall and newly presented staggered stud wood wall. First, the strength characteristics of staggered stud wood walls were evaluated and the those of standard wood walls were compared. The ultimate load of the standard wall was larger than that of the staggered stud wood wall, because the cross section of the wood making up the standard wood wall was larger than that of the staggered stud wood wall. However, the statistical analysis between the two groups didn't showed a significance of 95% confidence level. This means that, staggered stud wood walls have shown the possibility of replacing the standard wood wall. Because the cross-section of the stud in the staggered stud wood walls is smaller than that of the standard wall, the material can be saved. Therefore, staggerd wood stud wall is judged to be more economical than the standard wall. In addition, since the area of the insulation also increases, improvement of the heat bridge is also expected.

Partial Composite Action of Gypsum-Sheathed Cold-Formed Steel Wall Stud Panels (석고보드와 결합된 강재 샛기둥 패널의 부분 합성거동)

  • Lee, Young Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.373-380
    • /
    • 2001
  • The problem addressed in this study is how to analytically treat the partial composite action for wall panels. An equation, derived for wood-joist floor systems, which determines deflections for beams with partial composite action is introduced. The equation is applied to the calculation of the mid-span deflection for gypsum-sheathed, cold-formed steel was stud panels. The objective of this study is to properly reflect the influence of the following factors in the calculation of mid-span deflection for the panel: connection slip, local buckling, perforations in the stud web, and effects from joints in the sheathing. Predicted deflections based on an upper bound for connection rigidity were closest to experimental deflections.

  • PDF

A Study on Evaluation of Floor Vibration for Steel Frame Modular Housing (철골 조립식주택 바닥판 진동 평가에 관한 연구)

  • Kim, Jong-Sung;Jo, Min-Joo;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.104-111
    • /
    • 2016
  • The steel frame modular housing of which the research and development has been actively carried out recently cannot be constructed through monolithic placement like the reinforced concrete deck of general structure due to the characteristics of construction method of production in the factory and assembly on the site. And floor vertical vibration and deflection caused by inhabitants' activities may become an important issue in the aspect of usability evaluation due to a decrease in the section size of member, a decrease in weight, and so on. Therefore, this study evaluated the vibration performance of deck by using formula of AISC Design Guide 11(hereinafter AISC formula) which was practically used in general for modules where a stud was and wasn't installed at the center of beam in the longitudinal direction in the modular housing to be studied, and examined the applicability of AISC formula through comparison with the results of analysis using a general-purpose analysis program. On the basis of this, a structural cause for an error to occur between analysis result and AISC formula in the deck of module in which a stud was installed was analysed, and measures for considering this were suggested. Besides, an analysis model with the variables of measures for improving the floor vibration performance of modular housing to be studied was established. And measures having excellent vibration performance and economic feasibility were suggested through vibration response analysis and economic evaluation.

Limiting Height Evaluation for Cold-Formed Steel Wall Panels (냉간성형강재 벽체 패널의 한계높이 산정)

  • Lee, Young ki;Miller, Thomas H.
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • This study aimed to develop experiment-based limiting heights for interior, nonload-bearing, cold-formed steelwall panels sheathed with gypsum board and subjected to uniformly distributed lateral loadings. Th e limiting heightswere evaluated by their strength (for flexure, shear, and web crippling) and deflection. Limiting heights for deflectionlimits of L/360, L/240, and L/120 (where L is the height of the wall) were developed over the range of typical designpressures.

Structural Behavior of Newly Developed Cold-Formed Steel Sections(II) - Flexural Behavior (신형상 냉간성형 단면의 구조적 거동(II) - 휨거동)

  • Song, In Seop;Kim, Gap Deuk;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.357-364
    • /
    • 2002
  • The study performed a series of flexural tests on Closed Cold-Formed Steel Sections for stud, joist, and roof truss. Results were compared with analytical values. Each 2.4-m long and 0.9-m wide specimen consisted of two steel beams set at 0.46 m interval. The steel beams were attached to the specimens using either plaster board or ply wood. Another specimens did not use any attachment material. Positive and negative bending tests were conducted to investigate the composite behavior, including the effects of plaster board or ply wood on the buckling behavior of steel beam. Full-scale roof truss tests were also performed to study the buckling behavior and failure mode of the truss members.

Progressive Collapse Resisting Capacity of Building Structures with Infill Steel Panels (강판벽이 설치된 건물의 연쇄붕괴 저항성능)

  • Lee, Ha-Na;Kwon, Kwang-Ho;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • In this study the progressive collapse behavior of a moment frame with infill steel panels is evaluated using nonlinear static pushdown analysis. The analysis model is a two story two span structure designed only for gravity load, and the load-displacement relationship is obtained with the center column removed. To obtain local stress and strain as well as the global structural behavior, finite element analysis is conducted using ABACUS. Through the analysis the effect of the span length and the thickness of the steel plate on the progressive collapse behavior of the structure is investigated, and the effect of the dividing the infill panel using stud columns is also studied. According to the analysis results, the thickness of the panels required to prevent progressive collapse increases as the span length increases, and as the number of panel division increases the progressive collapse resisting capacity increases slightly but the effect is not significant. It is also observed that when the infill panel is installed in only a part of the span the progressive collapse resisting capacity is somewhat increased.

Analysis on the Displacement Constraints of Frames for Plastic Film Greenhouse (플라스틱 필름 온실용 구조재의 변위제한 검토)

  • Yun, Sung-Wook;Choi, Man-Kwon;Lee, Siyoung;Kang, Donghyeon;Kim, Hyeon-Tae;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.273-281
    • /
    • 2016
  • In this study, after carrying out a bending test that targeted the frames of plastic film greenhouse, the load-displacement relationship was analyzed to be used as basic data to develop greenhouse construction and maintenance guidelines. As a result, regardless of the shapes of the specimen, the yield and the maximum load increased as the size of the specimen increased. The displacement also showed the same pattern. A steel pipe showed lower yield and maximum load than a square pipe, and the displacement was large. In the steel pipe case, the displacement under the yield and maximum load was in the range of approximately 1.42-4.20mm and 5.80-24.13mm, respectively. In the square pipe case, the displacement under the yield and maximum load was in the range of approximately 1.62-3.00mm and 3.13-8.01mm, respectively. Further, a large difference was observed between the result of this test and the values calculated by a conventionally provided standard. In particular, not much difference was found from the result of this test in the case of a purlin member from the values provided by previous researches. However, a large difference was observed in the column or main rafter members. Furthermore, when a wide-span and venlo type, which is a glasshouse, was used as a target(h/100 and h/80), the displacement under the yield and maximum load was approximately 28.0mm and 35.0mm, respectively, which showed a large difference compared with the Netherlands standard(14.0mm) of a glasshouse. Further, in the main rafter case, a large difference was observed in the displacement limit according to the width(i.e., span) of the greenhouse where members are used. Therefore, because the displacement limit can vary depending on various factors such as type, form, and size of a greenhouse, we determined that studies or tests that consider these factors should be carried out to reflect them in the construction and maintenance of greenhouses.