• Title/Summary/Keyword: 샌드위치 압축

Search Result 38, Processing Time 0.023 seconds

Design, Fabrication and Test of Smart Skin Sandwich Specimen (스마트 스킨 샌드위치 시편의 설계, 제작 및 시험 평가)

  • 김용범;김영성;박훈철;윤광준;이재화
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.45-51
    • /
    • 2002
  • Smart skin, a multi-layer structure of composed or different materials, was designed and fabricated. Tests and analyses are conducted to study the characteristics of its behavior under compression and bending loads. The designed smart skin failed due to premature buckling before compression failure. It was confirmed that shear moduli of honeycomb core affect structural stability of smart skin. A new test method and device were designed fur better measurement of shear moduli of honeycomb core. Numerical prediction of structural behavior of smart skin by NASTRAN agreed well with experimental data.

Compressive Behavior for Smart Skin of Sandwich Structure (스마트 스킨 샌드위치 시편의 압축거동 연구)

  • Kim, Young-Sung;Kim, Yong-Bum;Park, Hoon-Cheol;Yoon, Kwang-Joon;Lee, Jeo-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.56-64
    • /
    • 2002
  • In this work, a smart skin of multi-layer structure is designed and manufactured. Through the compression test, the characteristic of smart skin behavior was examined. We have predicted stress of each layer and the first failed layer of the smart skin structure by using MSC/NASTRAN. The finite element model was verified by comparing measured data from the compression test and result from the geometrically linear/non-linear analysis. The finite element model was used for obtaining design data from the parametric study. It was confirmed that shear moduli of honeycomb core affect the buckling load of smart skin where shear deformation was considerable.

Buckling Behavior of Sandwich Composite Columns by Varying Hole Size and Hole Position (원공 크기 및 원공 위치에 따른 샌드위치 복합재 기둥의 좌굴 거동)

  • Lee, Sang-Jin;Yoon, Sung-Ho
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The study investigated the buckling behavior of sandwich composite columns with different hole sizes and hole positions when they were applied to a compressive load. The columns consisted of 1.7mm thick faces of glass fabric/epoxy and 23mm, 37mm, 48mm, and 61mm thick cores of urethane-foam. Different hole sizes with the diameter of 25mm and 38mm were considered in this experiment. To evaluate the effect of hole position on the buckling behavior, we considered three types of hole position: 25mm diameter hole located at the center, 25mm diameter hole at 1/4 position from the center to the end of the column, and 25mm diameter hole at 1/2 position from the center to the end of the column. According to the results, buckling and maximum loads of the column having 25mm diameter hole were lower by 10% compared to those of the column without hole, whereas the loads for the column having 38mm diameter hole were 30% less than those of the column without hole. Hole position appeared to have no effect on buckling and maximum loads. Major failure modes were observed as follows: the core shear failure for the thin columns having 23mm and 37mm thick cores, and the face-core debonding for the thick columns having 48mm and 61mm thick cores.

A Study on the Micro-deformation of Plain Weave Carbon/Epoxy Composite-Polymer Foam Sandwich Structures during Curing (평직 탄소섬유 복합재료-고분자 포움 샌드위치 구조의 성형 중 미소변형에 관한 연구)

  • Kim Yong-Soo;Chang Seung-Hwan
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.28-36
    • /
    • 2004
  • Micro-tow deformation during forming of PVC foam-fabric composite sandwich structure is investigated to find out the correlation between forming condition and material deformation. The foams used in this research are PVC foams which have 4 different densities and the fabric composite is Carbon/epoxy prepreg which is plain weave (3k) as a skin material. Tow parameters such as crimp angle and tow amplitude are measured using microscope and a proper image tool and are compared with each other. In order to find out the effect of foam deformation during forming on tow deformation the compressive tests of foams are performed in three different environmental temperatures ($25^{\circ}C$, $80{\circ}C$, $125^{\circ}C$). The microscopic observation results show that the micro tow deformations are quite different from each other with respect to the foam density and forming pressure.

Analytical Solution for the Ultimate Strength of Sandwich Panels under In-plane Compression and Lateral Pressure (조합 하중을 받은 샌드위치 패널의 최종강도 설계식 개발)

  • Kim, Bong Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.535-546
    • /
    • 2019
  • The paper presents a closed-form analytical solution for the ultimate strength of sandwich panels with metal faces and an elastic isotropic core during combined in-plane compression and lateral pressure under clamped boundary condition. By using the principle of minimum potential energy, the stress distribution in the faces during uni-axial edge compression and constant lateral pressure was obtained. Then, the ultimate edge compression was derived on the basis that collapse occurs when yield has spread from the mid-length of the sides of the face plates to the center of the convex face plates. The results were validated by nonlinear finite element analysis. Because the solution is analytical and closed-form, it is rapid and efficient and is well-suited for use in practical structural design methods, including repetitive use in structural optimization. The solution applies for any elastic isotropic core material, but the application that stimulated this study was an elastomer-cored steel sandwich panel that had excellent energy absorbing and protective properties against fire, collisions, ballistic projectiles, and explosions.

Compressive and Bending Behavior of Sandwich Panels with Octet Truss Core Fabricated from Wires (와이어를 이용하여 제작된 옥데트 트러스 샌드위치 판재의 압축 및 굽힘 거동)

  • Lim Ji-Hyun;Nah Seong-Jun;Koo Man-Hoe;Kang Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.470-476
    • /
    • 2005
  • Ultra light metal structures have been studied for several years because of their superior specific stiffness, strength and potential of multi functions. Many studies have been focused on how to manufacture ultra light metal structures and optimize them. In this study, we introduced a new idea to make sandwich panels having octet truss cores. Wires bent in a shape of triangular wave were assembled to construct an Octet truss core and it was bonded with two face sheets to be a sandwich panel. The bending & compressive strength and stiffness were estimated through elementary mechanics for the sandwich specimens with two kinds of face sheets and the results were compared with the ones measured by experiments. Some aspects of assembling and mechanical behavior were discussed compared with Kagome core fabricated from wire, which had been introduced in the authors' previous work.

Compression Behavior of Steel Plate-Concrete Structures with the Width-to-Thickness Ratio (폭두께비에 따른 강판콘크리트구조의 압축거동)

  • Han, Hong-Soo;Choi, Byong-Jeong;Han, Kweon-Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.229-236
    • /
    • 2011
  • This study was conducted to understand the characteristics of the compression behavior of steel plate-concrete(SC) structures with a width-to-thickness ratio under axial loading. SC structures are structural systems where concrete is poured into steel plates to which headed stud bolts had been attached inside. The specimens were classified according to the two width-to-thickness (W/T) ratios of 1.60 and 3.56. Through these experiments, the following conclusions could be arrived at. The fracture pattern of the specimens showed that steel plate buckling occurred between the stud lines, and that a crack occurred at the concrete spalling from the sides of the concrete before the system reached the maximum compressive strength. The maximum compressive strength of the specimens was larger than that of the existing equations (AISC 2005, ACI 318-05, and KBC 2005). With the increased W/T ratio of the specimens, the strength of the concrete core was decreased to account for the confinement effects from the steel plates.

A Study on the Post-buckling Behavior of Slit Type FLD(Force Limiting Device) (슬릿형 응력제한장치(FLD)의 좌굴 후 거동에 관한 연구)

  • Oh, Young Suk;Kim, Cheol Hwan;Kim, Chae Yeong;Chae, Won Tak
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.475-486
    • /
    • 2013
  • This research is about design of slit type FLD which secure the buckling stability of compressive brace. 4 slit type and 8 slit type specimens were experimented by pure compressive loading. Comparing the experiment results with FEA results, the good correspondence is appeared each other. Also for deriving strength-displacement formular, an unit section of slit type FLD is transferred to idealized sandwich section. This formular explains satisfactorily experiment results, in given condition. The result of this research will be used as basic data in FLD design.

Modified Octet Truss Cellular Metals Fabricated by Expanding Metal Process (I) - Compression and Shear Properties - (확장금속망 공정으로 제작된 옥테트 트러스 다공질 금속 (I) - 압축 및 전단 특성 -)

  • Joo, Jai-Hwang;Lee, Dong-Seok;Jeon, In-Su;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1124-1130
    • /
    • 2007
  • This paper presents a new way for fabricating sandwich plates with tetrahedral truss cores. The tetrahedral truss cores are manufactured through metal expanding and bending process and then brazed with solid face sheets. The properties of sandwich plates with the tetrahedral truss cores composed of a wrought steel SS41 under compression and shear loading have been investigated. Good agreement is observed between the measured and predicted peak strengths. Comparisons with normalized compressive strength for other cellular metals have indicated that the tetrahedral truss structures outperform aluminum open cell forms and woven core sandwich plates.

A Study on the Compressive Characteristics of Sandwich Sheet with Pyramid Core in the Thickness Direction (피라미드 코어를 가진 샌드위치 판재의 두께 방향 압축 특성에 대한 연구)

  • Cho, K.C.;Kim, J.Y.;Kim, J.H.;Chung, W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.635-640
    • /
    • 2006
  • Sandwich sheet with inner structure is expected to find many applications because of high stiffness to mass ratio. However, low resistance to the compressive pressure in the thickness direction is a dominating factor in the formability of sandwich sheet. In this study, sandwich sheet with pyramid type core is considered. For the compressive characteristics in the thickness direction, experiments and finite element simulations are carried out. In the experiment, deformation behavior is observed and discussed as the compression proceeds. It is shown that a corresponding finite element simulation can give a reasonable agreement with experiment in terms of maximum pressure. However, simulation shows some discrepancy from the experiment in terms of compressive pressure-displacement characteristics. The reasons for this discrepancy are studied in the geometrical imperfectness of sandwich sheet. It is also observed that most of deformation is dominated by buckling mode of pyramid legs.