• Title/Summary/Keyword: 샌드위치 구조물

Search Result 96, Processing Time 0.03 seconds

A Study on the Analysis of causes & minimizing of Defects at Composite Materials Sandwich Aircraft Structure in Autoclave Processing (항공기용 복합재료 샌드위치 구조물의 오토클레이브 성형시 발생되는 결함 원인 분석과 그 최소화 방안)

  • 권순철;임철문;최병근;이세원;한중원;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.29-33
    • /
    • 2000
  • The purpose of this paper is to determine the effect of the autoclave inner pressure rate, heat-up rate, tool round angle, Thickness of core, height of joggle on defects, and to minimize the defects of aircraft sandwich structure reinforced with honeycomb core occurred in autoclave processing. The results showed that the geometry of aircraft sandwich structure and tool such as tool round angle, Thickness of core, height of joggle, and the autoclave cure conditions such as inner pressure rate, heat up rate strongly affected the core movement, core wrinkle, bridge phenomenon of prepreg and depression of core that occurred in autoclave processing.

  • PDF

Design of Multilayer Composite-Antenna-Structures Considering Adhesive (접착필름의 영향을 고려한 다층 복합재료 안테나 구조 설계)

  • Kim, D.S.;Park, H.C.;Park, W.S.;Hwang, W.
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.27-31
    • /
    • 2007
  • "Structural surface becomes an antenna." This term, CAS, indicates antenna embedding in structural surfaces. The CAS is composed of several composite laminates and Nomex honeycombs, and microstrip antenna elements are inserted between layers with designed configurations. Constituent materials are selected considering electrical contributions as well as mechanical performances. Antenna design with adhesive films are impossible because of their thin and rough distributions between honeycomb and substrate. Therefore, adhesive effects on antenna performances in CAS are experimentally investigated, CAS with targeted impedance and radiation characteristics are designed considering adhesive effects. multilayer

Impact Damage of Honeycomb Sandwich Antenna Structures (통신 안테나용 허니콤 샌드위치 구조물의 충격 손상에 관한 연구)

  • Kim, Cha-Gyeom;Lee, Ra-Mi;Park, Hyeon-Cheol;Hwang, Un-Bong;Park, Wi-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.387-398
    • /
    • 2002
  • The impact response and damage of CLAS panel was investigated experimentally. The facesheet material used was RO4003 woven-glass hydrocarbon/ceramic and the core material was Nomex honeycomb with a cell size of 3.2mm and a density of 96 kg/㎥. The shield plane used was RO4003 and 2024-T3 aluminum. Static indentation and impact test was conducted to characterize the type and extent of the damage observed in two CLAS panels, and the performance of antenna used in a wireless LAN system. Correlation of peak contact force, residual indentation and the delamination area shows impact damage of the panel with an aluminum shield plane is larger than that of the panel with RO4003 shield plane, although the former is more penetration resistant. The damage was observed by naked eye, ultrasonic inspection and cross sectioning. The shape and size of delamination was estimated by ultrasonic inspection, and the area of delamination linearly increases as impact energy increases. The performance of impact damaged antenna was estimated by measuring return loss and radiation pattern. It was revealed that the performance of antenna was related to the impact damage and there was a threshold that the performance of antenna fell as impact energy level changed. The threshold was between the impact energies of 1.5J and 1.75J.

Size Effects in the Failure of Simple Supported Sandwich Slab Bridges (단순지지된 샌드위치 슬래브교량의 파괴시 치수효과)

  • Han, Bong-Koo;Kim, Duck-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.83-90
    • /
    • 2010
  • Composite materials can be used economically and efficiently in civil engineering applications when standards and procedure for analysis, design, construction and quality control are to be established. Bridge systems, including the girders and cross-beams, and concrete decks behave as the specially orthotropic plates. For such systems with sections, boundary conditions other than Navier solution types, it is very difficult to obtain its analytical solution. To design the bridge made by the composite materials, cross-section was used as the form-core shape for economical reason and finite difference method was used for output of the stress value. The Tsai-Wu failure criterion for stress space is used. In this paper, the rate of tensile strength reduction due to increased size was considered. And also numerical study is made for these cases.

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

Design and Impact Testing of Cylindrical Composite Antenna Structures (원통형 복합재료 안테나의 설계 및 충격 실험에 관한 연구)

  • Lee, Sang-Min;Cho, Sang-Hyun;Lee, Chang-Woo;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.55-59
    • /
    • 2009
  • Microstrip antennas are low profile, are conformable to planar and nonplanar surfaces, are simple and inexpensive to manufacture, mechanically robust when mounted on rigid surfaces and are compatible with MMIC(Monolithic microwave integrated circuit) designs; they have been used in diverse communication systems. The rectangular microstrip patch antenna is designed for a central frequency of 12.5 GHz, and the final product is a $4{\times}1$ array antenna with curvature radius of 200 mm. The microstrip antenna is embedded in a sandwich structure which consists of skin and core material. After impact, the performance of damaged antenna is estimated by measuring the return loss and radiation pattern. The antenna performance was not affected by this impact damage.

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.

Full-Frequency Band Acoustic Analysis of Sandwich Composite Structure Using FE-BEM and SEA Method (FE-BEM 및 SEA 해석 기법을 활용한 샌드위치 복합재 구조물의 전 주파수 대역 음향 해석)

  • Lee, Dae-Oen;Lee, Yoon-Kyu;Kim, Hong-Il;Kim, Jae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.422-428
    • /
    • 2018
  • Increase in use of lightweight structures, coupled with the increased acoustic loads resulting from larger and longer range guided missiles, has made missile more susceptible to failures caused by acoustic loads. Thus, accurate prediction of acoustic environment and the response is becoming ever more important for mission success. In this paper, the acoustic response of a sandwich composite skin structure to diffuse acoustic excitation is predicted over a broad frequency range. For the low frequency acoustic analysis, coupled FE-BEM method is used where the structure is modeled using FEM and the interior and exterior fluid is modeled using BEM. For the high frequency region, statistical energy analysis is applied. The predicted acoustic level inside the structure is compared with the result from acoustic test conducted in reverberation chamber, which shows very good agreement.

Development of a Cantilevered Patient Table Considering X-ray Transparency (X-선 투과특성을 고려한 외주형 수술용 테이블 개발)

  • Won B.H.;Chun K.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.189-190
    • /
    • 2006
  • A patient table considering x-ray transparency, mechanical safety and compact multi-axis moving mechanism has been developed. The goal of medical imaging technology is to keep radiation exposure of patients during x-raying to a minimum. In order to obtain clear pictures at low dose, however, the x-ray table which supports the patient must be sufficiently permeable to radiation to allow good image resolution. The table top is made of low density foam for x-ray transparent effective area and structural aluminum plate to connect moving mechanism under the table, covered with thin carbon fiber. This sandwich construction is very rigid and lightweight, so the table top can handle relatively heavy load comparing to its cantilevered structure which is unavoidable as long as cooperate with C-arm radiography. To verify the design results finite element static analysis and experimental tests have been done. According to the verification the results well satisfy certification guide lines as a medical device.

  • PDF

The Necessity of Structural Performance Informations of Sandwich Panels for The Stability of Industry Building using Sandwich Panel as Roof Assemblies. (지붕하중 증가에 따른 공장건물 안정성확보를 위한 지붕외장재의 구조성능정보의 필요성)

  • Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.725-730
    • /
    • 2017
  • The strength ratio of the main structures of buildings gradually increasing, due to the advances made in analysis and cost saving techniques. In this study, to examine the stability of industry buildings using sandwich panels as roof assemblies, we examine the changes in the moment strength ratio of the main structures caused by increasing the roof load. This study adopts the PEB structure and three H-steel structure as the structural analysis models. In the case where the additional load exceeds about 11% of the roof design load, the strength ratio exceeds 1 for the main structure. In the case where the additional load exceeds about 36%(of the roof design load), the working moment exceeds the plastic moments, which leads to major damage to the structure. This study compares 1) the maximum load according to the purlin spaces, 2) the maximum load by KS, and 3) the maximum load calculated from the test results of the manufacturer.The maximum bearing load of the panels determined by all three methods exceeds the structure failure threshold load of the main structure. This study provides evidence that an unexpected increase in the roof load might cause the whole structure to collapse, due to the failure of the main structural members, before the failure of the roof assemblies. Therefore, information on the structural performance of the sandwich panels is required for the structural design, and the sandwich panels should be considered to be an integral part of the overall structural design.