• Title/Summary/Keyword: 샌드위치식

Search Result 58, Processing Time 0.025 seconds

Analytical Solution for the Ultimate Strength of Sandwich Panels under In-plane Compression and Lateral Pressure (조합 하중을 받은 샌드위치 패널의 최종강도 설계식 개발)

  • Kim, Bong Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.535-546
    • /
    • 2019
  • The paper presents a closed-form analytical solution for the ultimate strength of sandwich panels with metal faces and an elastic isotropic core during combined in-plane compression and lateral pressure under clamped boundary condition. By using the principle of minimum potential energy, the stress distribution in the faces during uni-axial edge compression and constant lateral pressure was obtained. Then, the ultimate edge compression was derived on the basis that collapse occurs when yield has spread from the mid-length of the sides of the face plates to the center of the convex face plates. The results were validated by nonlinear finite element analysis. Because the solution is analytical and closed-form, it is rapid and efficient and is well-suited for use in practical structural design methods, including repetitive use in structural optimization. The solution applies for any elastic isotropic core material, but the application that stimulated this study was an elastomer-cored steel sandwich panel that had excellent energy absorbing and protective properties against fire, collisions, ballistic projectiles, and explosions.

Properties of St/BA Modified Cellular Lightweight Concrete as Sandwich Panel Core (샌드위치패널심재로 활용한 St/BA 개질 다공성 경량 콘크리트의 특성)

  • 강내민;노정식;도정윤;문경주;소양섭
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.31-34
    • /
    • 2003
  • Sandwich panel is composed of the facing sheets which support the external load, the cellular core with the low thermal conductivity and the adhesive agent to bond them. The cellular core was produced by binding lightweight cellular aggregates with cement and two types of acrylic base St/BA emulsion were added with a view to improving the workability ion due to high absorption of light weight aggregate and to develope more strength, respectively. This investigation is to comprehend the effect of the addition of two types of St/BA on thermal conductivity, calorific value and exhaustion content of noxious gas in addition re compressive and flexural strength. Flexural strength of the specimen made with St/BA-2 ranged 20kgf/cm2 to 25kgf/cm2 and was about 50% to 100% as high as that of the non-fiber specimen. Thermal conductivity was recorded from 2.0 to 3.0 kcal/mh$^{\circ}C$ and calorific value of St/BA modified specimen was much lower than that of commercial sandwich panel core of EPS and urethane. Careful caution has to be taken because generation of noxious gas such as CO, NO and SO2 tend to increase with addition of polymer cement ratio.

  • PDF

Strength Properties of Sandwich Panel core using Cellular lightweight Aggregate according to Curing Temperature (양생온도에 따른 다공성 경량골재를 활용한 샌드위치 패널심재의 강도 특성)

  • 노정식;김대규;도정윤;문경주;소양섭
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.35-38
    • /
    • 2003
  • The purpose of this study is to investigate the manufacture of light weight concrete panel using the artificial light-weight aggregate as a part of the substitution of foamed styrene and polyurethane because of narrow allocable temperature Bone in use. The experimental parameter of this study is 40, 60 and 8$0^{\circ}C$ of curing temperature at 100% relative humidity and the type of admixture such as cement, 6mm glass fiber and St/BA emulsion. Testing item is compressive and flexural strength and strength of specimen cured at standard condition is compared to that of specimen cured at 40, 60 and 8$0^{\circ}C$ of curing temperature at 100% relative humidity. As a result or this, it was revealed that the maximum or strength is developed in 6$0^{\circ}C$ or cure temperature at 100% relative humidity in case of the most of the specimen. Specimens modified by St/BA emulsion show the highest development of strength dependent on the curing tmeperature. So, it seems to be effective that evaporation curing method shoud be considered to curing the specimen as the panel core.

  • PDF

Structure Test and Vibration Analysis for Small Aircraft (소형항공기(반디호) 몰드의 구조시험 및 진동해석)

  • Jung, Do-Hee;Kim, Jin-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.692-697
    • /
    • 2005
  • A canard type aircraft, which has good wing stall and stall/spin proof characteristics, is being developed. The previous first and second prototypes, having full depth core sandwich type wing and fixed landing gear, was built for test flights. Newly developing Firefly will be equipped with retractable landing gear and conventional foam core sandwich laminate for wing and fuselage. For manufacturing, composite material process has been studied including coupon tests. Wet lay-up onto foam core with glass fabric using lay-up mold has been chosen, and composite material parts are cured under room temperature and atmospheric pressure condition. In general, molded parts show so good surface smoothness and standardized quality that are best in mass production. In this study, we present the mold technology and development status for small aircraft firefly.

  • PDF

Analytical Study on Equivalent Shear Modulus according to Shape of Egg-box Core (에그-박스 코어 형상 변화에 따른 등가 전단 탄성계수 수치 해석 연구)

  • Lee, SangYoun;Yun, Su-Jin;Park, DongChang;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.73-79
    • /
    • 2014
  • The sandwich shell with Egg-box core has been used for the combustion chamber case of air breathing propulsion system. The alteration on pitch length and thickness of Egg-box core was required to be lighter and save manufacturing time and cost of combustion chamber case. In this paper, the finite element analysis method which simulated bending test was used to predict the equivalent shear modulus which affect structural stability of sandwich shell in short time. The result of FE calculation on sandwich panel with homogeneous material, H130-foam core, showed a good agreement with the values available in the reference. The equivalent shear modulus of Egg-box core according to the variation of pitch length and thickness can be obtained.

Verification of load equations for sandwich plates during U-bending (샌드위치판재의 U-bending 공정에서 굽힘하중식의 검증)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.435-438
    • /
    • 2008
  • To verify the load equations, the load-stroke curves of the load equation that were analytically derived for sandwich plates were compared with those of the simulations in the case of the total thickness of 3 mm, the thickness of the face sheets of 0.5 mm, a gap between attachment points of 1.5 mm, and a thickness of the core element of 0.8 mm. The results of the comparisons showed that the overall analytic loads enable the prediction of the numerical loads irrespective of the change of the clearance, the radius of the die, and the radius ratio.

  • PDF

Strength properties of Polymer-modified Sandwich panel core using non-structural lightweight Aggregate (비구조용 경량 골재를 충진재로 활용한 폴리머 개질 샌드위치 패널 심재의 강도 특성)

  • 노정식;도정윤;문경주;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.775-780
    • /
    • 2002
  • Sandwich panel made by foamed styrene and ployuretane has been used generally in the construction area because of the high thermal conductivity and light weight but they occur harmful gases to both bodies and environments in the high temperature over $50^{\circ}C$. So, the purpose of this study is to investigate the physical properties of light-weight panel using the non-structural lightweight aggregate as a part of the substitution of foamed styrene and ployuretane. This paper dealt with the effect of the addition of polymer dispersion such as SBR, St/BA-1 and St/BA-2 having polymer-cement ratio as 5, 10, 15% and the filling ratio of continuous void as 50, 60% on the strength of polymer-modified sandwich panel core. From the results, we could know that the compressive and flexural strength of the sandwich panel core using non-structural lightweight aggregate and polymer dispersion such as SBR, St/BA-1 and St/BA-2 tended to be increased with an increase in the polymer-cement ratio and the filling ratio of continuous void.

  • PDF

Optimal Design for Maximum Transmittance of Electromagnetic Wave through Foam Core Sandwich Structures Using Genetic Algorism (유전자 알고리즘을 이용한 폼코어 샌드위치 구조물의 전파 투과성 최적화에 관한 연구)

  • 신현수;전흥재;박근식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.183-186
    • /
    • 2001
  • In this paper, the analytical model to understand the propagation of electromagnetic waves in the foam core sandwich structures was proposed. Using the analytical model, efforts were made to find the optimal stacking sequence of composite skins for maximum transmittance of electromagnetic wave. Numerical analyses of unidirectional composites and foam as a function of incident angle were performed. From the results of analysis, the general tendencies of transmittance of electromagnetic wave through composites and foam were obtained. Based on the general tendencies, optimal stacking sequences of composite skins for the maximum transmittance of electromagnetic wave were found with certain ranges of incident angle using genetic algorithm(GA).

  • PDF

Bending Characteristics of Carbon Fabric/Polymeric Foam for Sandwich Structures (직조 탄소섬유 발포 고분자 샌드위치 구조의 굽힘특성)

  • Chang Seung Hwan;Jang Tae Seong;Choi Jin Ho;Cheon Seong Sik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.131-134
    • /
    • 2004
  • In this paper, a representative unit volume (RUV) model was employed to simulate thermoforming process of carbon fabric-polymeric foam sandwich structures. Thermoforming simulations, which capture crimp angles and amplitude changes of carbon fabric with respect to different types of foams under the operating pressure were conducted with the help of RUV model. Changed shapes of tow structure after thermoforming were reflected in the two dimensional to determine mechanical properties of skin parts, i.e_ carbon fabric composites after thermoforming. Bending simulations with respect to different foam systems as well as different moduli of carbon fabric composites were successfully carried out by using properties obtained from two-dimensional analyses.

  • PDF

The Development of Inner Structure of Metallic Sandwich Plates for Bending (굽힘성형을 위한 금속 샌드위치판재의 내부구조재 개발)

  • Seong, D.Y.;Jung, C.G.;Yoon, S.J.;Shim, D.S.;Lee, S.H.;Ahn, D.G.;Yang, D.Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.126-131
    • /
    • 2006
  • Metallic sandwich plates are ultra-light materials not only with high strength and stiffness but also with other multifunctional physical properties. Inner dimpled shell structure can be fabricated by a piecewise sectional forming process, and then bonded with face sheets of the same material by resistance welding. Possible region for bending and limit radius of curvature are defined to compare the formability of sandwich plates. Tests have shown that sandwich plates with inner dimpled shell structure subject to bending have longer possible region for bending and smaller limit radius of curvature than other types of sandwich plates. The proposed inner dimpled shell structure is shown to have better formability of sandwich plates for bending than other types inner structures.