• 제목/요약/키워드: 색상 분포

검색결과 294건 처리시간 0.034초

색상 움직임을 이용한 얼굴 특징점 자동 추출 (Automatic Extraction of the Facial Feature Points Using Moving Color)

  • 김남호;김형곤;고성제
    • 전자공학회논문지S
    • /
    • 제35S권8호
    • /
    • pp.55-67
    • /
    • 1998
  • 본 논문에서는 컬러 비디오 시퀀스 상에서 눈과 입에 해당하는 얼굴 특징점을 고속으로 추출하는 방법을 제안한다. 자유로운 움직임을 갖는 얼굴 영역을 안정적으로 추출하기 위해 얼굴 색상 분포를 이용한 색상 변환 영상에 움직임 검출 기법을 적용하여 움직이는 살색 부분만을 효율적으로 검출하는 색상 움직임 개념을 사용하였다. 움직임 정보는 살색의 가능성 정도에 따라 가중치가 주어지며 화소 단위의 움직임 여부를 결정하는 문턱값도 살색의 가능성 정도에 따라 적응적으로 결정된다. 눈의 색상분포와 형태소 연산자를 사용한 움직임 살색 영역에서 눈 후보 영역을 추출하고 눈과 눈썹의 상호 위치 관계를 이용하여 눈의 영역을 최종 결정한다. 입의 영역은 눈의 위치를 기준으로 입 후보 영역을 정하고 색상 히스토그램을 이용하여 입의 영역을 검출한다. 찾아진 눈과 입의 영역에서 정확한 특징점의 위치를 구하기 위해 PCA (Principal Component Analysis)를 사용하였다. 실험 결과 복잡한 배경, 개인적인 편차, 얼굴의 방향과 크기 등에 영향을 받지 않고 고속으로 정확한 얼굴의 특징점을 추출할 수 있었다.

  • PDF

혀의 색상 분석에 의한 새로운 한방 설진(舌診) 모델 개발 (A development of a new tongue diagnosis model in the oriental medicine by the color analysis of tongue)

  • 최민;이민택;이규원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.801-804
    • /
    • 2013
  • 미각의 종류별 구획에 따른 설진 모델을 제안한다. 시스템의 전체 구성은 혀 영상획득, 혀 영역 검출, 혀 영역 분할, 분할 영역의 색상분포 검출, 이상 유무 판별로 구성된다. 혀의 DB는 정상 및 비정상 혀로 분류되었으며 실제 한방병원에 내원하는 환자들의 혀 사진으로 구축하였다. 혀 영역으로부터 짠맛, 신맛, 단맛, 쓴맛의 네 가지 영역으로 나누어 분할하고, HSI 컬러모델을 이용하여 색상분석을 시행하였다. 이때, 주변 조도의 영향을 최소화하기 위하여 I(Intensity)값을 제외한 H(Hue)와 S(Saturation) 성분의 히스토그램을 이용하여 색상을 분석하였다. 제안하는 색상분석 진단모델과 한의학 전문의의 진단 결과를 비교하여 미각별 영역의 이상 유무를 판단하였다. 제안하는 설진 알고리즘으로 판단한 결과 87.5%가 전문의의 분류의 결과 일치함을 확인하였다.

  • PDF

움직임 카메라 환경에서 파티클 필터를 이용한 객체 추적 (Object Tracking Using Particle Filters in Moving Camera)

  • 고병철;남재열;곽준영
    • 한국통신학회논문지
    • /
    • 제37권5A호
    • /
    • pp.375-387
    • /
    • 2012
  • 본 연구에서는 움직이는 CCD 카메라로부터 입력된 영상에서 색상 및 질감 성분을 기반으로 하는 파티클 필터를 이용하여 실시간으로 객체를 추적할 수 있는 알고리즘을 제안한다. 초기 영상에서 추적하고자 하는 객체를 선택하면 이를 타깃 파티클로 결정하고, 타깃 파티클로 부터 추적을 위한 초기 상태가 모델링 된다. 이후 프레임부터 N개의 파티클들이 랜덤 분포로 생성되고 각 파티클로 부터 질감 정보인 로컬 CS-LBP (Centre Symmetric Local Binary Patterns)모델과 색상 분포 모델이 특징 모델로 사용된다. 각 특징 모델에 대해 바타차리야 (Bhattacharyya) 거리를 사용하여 각 파티클과 타깃 파티클 간의 특징 관측 우도(likelihood)를 구하고 이를 각 파티클의 가중치로 설정 한다. 각 파티클의 가중치를 기반으로 가중치가 가장 높은 파티클을 새로운 타깃으로 설정하고, 각 파티클들을 재 샘플링 한다. 본 실험결과에서는 여러 가지 특징을 조합하여 실험을 하였고, 그 결과 색상 분포 모델과 로컬 CS-LBP를 조합했을 때 추적 성능이 가장 우수한 것을 확인할 수 있었다.

조명변화에 강인한 S-색상공간 기반의 차선색상 판별 방법 (Illumination-Robust Load Lane Color Recognition based on S-color Space)

  • 백승해;김염;이근모;박순용
    • 한국정보통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.434-442
    • /
    • 2018
  • 본 논문에서는 주행하는 차량에 탑재된 카메라에서 획득한 도로 영상에서 차선의 색상을 판별하는 방법을 제안하였다. 자동차의 자율주행기술에 있어 차선 정보는 차선이탈방지(ldws), 능동적 차선유지(lkas), 고속도로주행보조(hda) 등의 자율주행의 레벨(level)이 올라갈수록 중요하다. 특히 차선의 색상, 특히 흰색 및 황색 차선의 구별은 교통사고와 직접적인 관련이 있는 정보이기에 더욱 필요한 기술이다. 본 논문에서는 주행 차선 검출 결과를 기반으로 차선 및 도로의 관심 영역을 추출하고 각 영역의 컬러 정보를 2차원 S-색상 공간으로 투영하였다. S-공간에 투영된 색상의 특징 분포에서 개선된 mean-shift 알고리즘을 이용하여 특징의 무게중심을 구하였다. 좌, 우 차선과 도로영역의 색상특징의 중심점들 사이의 거리 정보를 이용하여 차선의 색상을 판별하였다. 다양한 조명환경에서 약 97%의 색상 인식 성공률을 보였다.

분포맵에 기반한 얼굴 영역 검출 (Face Detection Based on Distribution Map)

  • 조한수
    • 한국멀티미디어학회논문지
    • /
    • 제9권1호
    • /
    • pp.11-22
    • /
    • 2006
  • 얼굴 검출은 개인 인증이나 보안 등 그 응용분야가 다양하여 활발히 연구가 진행되고 있다. 본 논문에서는 분포맵에 기반한 얼굴 검출의 새로운 방법을 제안한다. 제안한 방법은 먼저, 빈도수를 고려한 피부색 분포맵을 입력 영상에 적용하여 일차적으로 얼굴 후보영역을 구하고, 이 영역에서 눈동자색 분포맵을 이용하여 눈후보영역을 결정함으로써 얼굴 구성 요소를 탐색하는 탐색공간을 축소한다. 결정된 눈 후보영역에서 가중치가 있는 윈도우를 이용하여 휘도성분과 색상성분의 상관값을 특징벡터로 한 템플릿 정합 방법으로 눈 후보점을 검출한다. 최종적으로 각 눈 후보점 쌍에 대하여 눈과 입의 위치관계 정보와 입을 인식하는 평가함수를 이용하여 얼굴을 검출하였다. 실험 결과, 제안된 방법은 좋은 성능을 보였다.

  • PDF

Lab 블록 매칭을 이용한 객체 탐색 및 타겟팅 (Object Detection & Targeting with Lab Block Matching)

  • 이정아;최철;최영관;박장춘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.727-730
    • /
    • 2004
  • 영상은 복잡한 객체들의 집합으로 이루어져 있기 때문에 영상에 포함된 객체를 분리하는 일은 컴퓨터 비전이나 인식 등 많은 분야에서 중요시 된다. 영상 처리 측면에서 객체를 분할하기 위해서 색상, 모양, 질감, 움직임 등 다양한 기법들이 이용되고 있다. 본 논문에서는 정확한 색상의 비교를 위해서 CIE 색상 모델을 이용하고 있으며 이것을 기반으로 객체를 추출하고 있다. 그리고 추출된 객체의 해석과 검증을 위해서 모양 기반의 분석법을 이용하고 있다. 본 논문에서는 Pan/Tilt 카메라의 타겟팅(Targeting)과 포커싱(Focusing)을 위해 영상 내에 포함되어진 객체를 검출하기 위한 방법론을 제안하고자 한다. 객체를 인식하기 위해 CIE 색상 모델을 이용한 색상 매칭 기법을 제안하고 있다. 색상의 분포를 파악하기 위해서 CIE 모델이 생성해내는 Lab 블록을 통계적인 방법으로 분석한다. 그리고 분석된 결과는 CIE 블록 매칭(Bock Matching) 기법의 기준이 되며 이것을 이용해서 후보 객체 영역(Candidate Object Area)을 추출하게 된다. 추출된 후보 객체 영역을 검증하기 위해서 모멘트를 이용한 모양 기반의 분석을 활용하고 있다.

  • PDF

교통표지판 검출을 위한 다중 색상 임계값 모델 (Multi-Color Threshold Model For Traffic Sign Detection)

  • 우병대;최영우;변혜란
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.226-228
    • /
    • 2013
  • 본 논문은 실제 주행 도로영상에서 교통표지판을 검출하기 위하여 다중 색상 임계값 모델을 이용한 색상 분할 방법을 제안한다. 제안하는 방법은 하나의 모델을 이용하는 기존의 색 분할 방법과 달리 다양한 조명 환경에서도 동작할 수 있는 다중 색상 모델을 사용한 방법이다. 모델 생성을 위해 각 조명 모델에 해당하는 학습용 데이터를 이용하여 모델의 임계값 범위를 추정한다. 이 과정에서 임계값의 범위는 상위 0.5%와 하위 0.5%를 제외한 픽셀 값 분포에서의 최대 및 최소값으로 결정한다. 제안한 방법을 이용하여 다양한 조명 상태에서의 교통표지판도 검출이 가능하다.

이미지 검색을 위한 색상 성분 분석 (Color Component Analysis For Image Retrieval)

  • 최영관;최철;박장춘
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.403-410
    • /
    • 2004
  • 최근 의료 영상 분석(Medical Image Analysis)이나 영상 검색(Image Retrieval)을 위한 전처리(Preprocessing) 단계로 영상 분석(Image Analysis)에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 영상 검색에서 색상 성분(Color Component)의 활용 방법을 제안하고자 한다. 이미지를 검색하기 위해 색상 성분을 기반으로 하고, 색상(Color)을 분석하기 위한 기법으로 CLCM(Color Level Co-occurrence Matrix)과 통계적 기법을 이용하고 있다. CLCM은 기하학적 회전 변환(Geometric Rotate Transform)을 통해서 색상 성분을 3차원 공간상에 투영(Projection)하여 공간 관계(Spatial Relationship)로부터 나타나는 분포를 해석하는 방법으로, 본 논문에서 제안하는 주제이다. CLCM은 색상 모델에서 만들어지는 2차원 히스토그램을 지칭하며 색상 모델의 기하학적인 회전 변환을 통해서 생성된다. 그리고 이를 분석하기 위한 방법으로 통계 기법을 활용하고 있다. CLCM과 유사하게 2차원 분포도를 사용하는 GLCM(Gray Level Co-occurrence Matrix)[1]과 불변 모멘트(Invariant Moment)[2,3] 같은 알고리즘은 2차원적인 데이터를 해석하기 위하여 기본적인 통계 기법을 활용하고 있다. 하지만 GLCM과 불변 모멘트가 각각의 도메인에 최적화되어 있다 하더라도 공간 좌표상에 존재하는 불규칙적인 데이터를 완전히 해석할 수는 없다. 즉 GLCM과 불변 모멘트는 기초 통계 기법만을 사용하고 있기 때문에 추출된 특징들의 신뢰성이 낮다는 것이다. 본 논문에서는 이러한 단점을 보완하여 공간 관계를 해석함과 동시에 데이터의 가중치를 해석하기 위해 전형적인 다변량 통계에서 사용하는 주성분 분석(Principal Component Analysis)[4,5]을 이용하고 있다. 그리고 데이터의 정확도를 높이기 위해서 3차원 공간상에 색상 성분을 투영하여 이를 회전시키면서 데이터의 특성을 다각도에서 추출하는 방법을 제시한다.

적응적 피부영역 검출을 이용한 얼굴탐지 (Face Detection using Adaptive Skin Region Extraction)

  • 황대동;박영재;김계영
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권1호
    • /
    • pp.35-44
    • /
    • 2010
  • 본 논문에서는 입력영상에서 적응적으로 피부색상 모델을 생성하여 얼굴을 탐지하는 방법을 제안한다. 제안하는 방법의 기본적인 절차는 먼저 눈의 특징을 인공신경망에 적용하여 눈 후보를 찾은 후, 그 주변의 색상을 이용하여 피부영역의 색상값 분포를 찾는다. 그 다음은 피부영역으로 검출된 색상값 분포를 이용하여 얼굴영역을 산출하고, 해당 얼굴영역 내에서 입 후보를 찾아 눈 후보와 입 후보의 구조적인 관계가 얼굴 구조와의 일치여부를 판단하여 얼굴영역을 검증하는 과정을 거친다. 이 방법은 눈을 찾아서 피부영역을 적응적으로 검출하기 때문에 기존의 얼굴탐지 방법들의 문제인 피부색상의 왜곡으로 인한 오검출을 해결하였다. 실험은 눈 탐지와, 피부 탐지, 입 탐지, 얼굴탐지에 대해 각각 수행하였다. 실험을 통하여 기존의 주요 방법들 보다 우수한 결과를 보였다.

색상과 모양 정보를 이용한 2단계 영상 검색 기법 (The 2-Phase Image Retrieval Technique using The Color and Shape Information)

  • 김봉기;오해석
    • 한국멀티미디어학회논문지
    • /
    • 제1권2호
    • /
    • pp.173-182
    • /
    • 1998
  • 최근 멀티미디어 기술의 발전으로 인해 영상을 효율적으로 검색할 수 있는 영상 데이터베이스 시스템이 정보화 사회의 중요한 핵심 기술로 대두되고 있다. 본 논문에서는 내용기반 영상 데이터 검색올 위한 영상 특정 추출 방법으로 색상 정보와 모양 정보를 고려하는 2 단계 영상 검색 시스템을 제안하였다 1 단계에서는 색상 정보를 위해서 Striker 등이 제시한 색상 분포 특성올 이용한 색인 방법의 문제점을 보완하고 확장하여 지역 색상 분포 특성을 고려한 색인 방법을 사용하여 1차로 영상을 개략 분류한다. 2 단계에서는 1 단계에서 분류된 집단 영상들에 대하여 2차로 모양 정보를 이용하여 사용자가 질의한 영상과 유사한 영상을 최종적으로 검색한다 모양 정보를 위해서는 기존 불변 모멘트의 문제점인 많은 연산량과, Jain 퉁이 제시한 방향 히스토그램 인터섹션 방법에서 제기된 회전에 민감하다는 문제점을 해결하기 위해 물체의 윤곽선에 해당하는 화소들만을 대상으로 연산을 수행하는 향상된 불변 모멘트(Improved Moment Invariants : IMI)를 이용한다. 실험 영상으 로 300개의 자동차 영상을 사용하여 기존 방법들과의 비교 실험을 통해 향상된 검색 결과를 얻을 수 있었다

  • PDF