• Title/Summary/Keyword: 색도제거

Search Result 214, Processing Time 0.027 seconds

생물학적 염색폐수처리에서 담체의 영향

  • Lee, Gi-Yong;Lee, Yeong-Rak;Im, Ji-Hun;Kim, Sang-Yong;Lee, Jin-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.382-385
    • /
    • 2000
  • This study tested for biological treatment of dye wastewater using isolated microbes taken from dye wastewater and commercial carriers. In the result, single strain of mocrobe achieved about 45% color removal efficiency in average. When two strains of microbes applied to the treatment, color removal efficiency was increased up to 85%. The carriers had optimal concentration as 15%

  • PDF

염색가공 공정폐수에서 반응성 염료 분해 균주의 분리 및 배양 최적화

  • Sin, Jong-Cheol;Choe, Gwang-Geun;Jin, Jong-Hwa;Jeon, Hyeon-Hui;Kim, Sang-Yong;Lee, Jin-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.356-360
    • /
    • 2003
  • Hundreds of microbial species were isolated and collected from dye-processing wastewater. Among them three species (named as RA1, RA2, and YA1) showed excellent ability of dye degradation. Especially, YA1 species could remove 53% of dye in 24 hours. To find optimal growth conditions for the isolated species, further research is going on.

  • PDF

Isolation of Novel White-rot Fungus and Effect for Decolorization of Dye Wastewater (새로운 염색폐수(染色廢水) 색도(色度) 제거(除去) 백색부후균(白色腐朽菌)의 분리(分離) 및 색도(色度) 제거(除去) 효과(效果))

  • Nam, Youn-Ku;Kwon, Hyuk-Ku;Lee, Bong-Joon;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.381-385
    • /
    • 2006
  • For decolorization of synthetic dyes, One fungus(HUE05-1) which was isolated from textile wastewater collected from industrial complex in Korea showed excellent ability of removing synthetic dyes. This fungus was identified as Basidiomycetes species by Internal Transcribed Spacers (ITS) sequence. Isolated fungi. HUE05-1 completely decolorized all dyes in both solid and liquid condition. The decolorization results were Reactive Orange-16, 97.12%; Reactive Blue-19, 92.09%; Reactive Blue-49, 97.04%; Reactive Yellow-145, 95.53%; Acid Orange-10, 99.18%; Acid Violet-43, 98.73%; Acid Blue-350, 94.71% and Disperse Blue-106, 90.07%.

A Study on Coagulation and MF Membrane Process for the Reuse of Sewage Effluent (하수처리장 방류수의 응집 및 정밀여과 처리공정에 관한 연구)

  • Paik, Ke-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.3 s.57
    • /
    • pp.36-43
    • /
    • 2005
  • Prior to the study of the sewage treatment methods, water quality for Gwangju sewage of fluent was investigated from January to December, 2004 for sewage water reuse. Monthly mean values of BOD, SS, turbidity, total phosphorus and color were 4.1 mg/L, 2.9 mg/L, 0.8 NTU, 1.3 mg/L, and 27 unit, respectively. Jar-test was performed to investigate the removal efficiency of pollutants under the coagulation conditions of fast mixing for 5 min, slow mixing for 15 min and precipitation for 1hr. Here, alum and polyaluminium chloride (PAC) were used as coagulants to reduce color, turbidity, total phosphorus (TP) and total organic carbon (TOC) in sewage effluents. The results showed that PAC gave better efficiency in removing turbidity and dissolved phosphorus than alum. It was also found from the relative molecular weight (RMW) distribution analysis that organic matter over 1,000 Dalton (Da) was easily removed by coagulation and subsequently MF treatment, while it was not effective for less than 500 Da. Based on tis result, Natural organic matter (NOM) with lower molecular weight (< 500 Da) may cause harmful disinfectant by-product (DBP) after chlorine treatment. Thus, activated carbon adsorption seems to be required for the complete removal of DBP in the hybrid system.

Isolation of Dye-degrading Microbes for the Treatment of Dyeing Wastewater and Dye Decoloring (염색폐수 처리를 위한 미생물 선별 및 염료 탈색)

  • Choi, Kwang-Keun;Lee, Young-Rak;Kim, Eui-Yong;Yoo, Young-Je;Kim, Sang-Yong;Lee, Jin-Won
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.731-736
    • /
    • 1999
  • 87 microbes were isolated from dyeing wastewater collected at Dongducheon and Banweol industrial complex. Five microbes showed excellent ability of color removal and were identified as Shewanella putrefaciens, Aeromonas salmonicida(3 different strains), and Pseudomonas vesicularis. Five identified strains had optimal pH and optimal temperature as 7.0 and 30$^{\circ}C$ for cultivation, and showed morphological characteristics of Gram negative, oxidase negative, rod shape, and non-motility, but their biochemical characteristics were distinguishable. Each single strain of five microbes were tested in the 500 mL flask to treat dyeing wastewater, and achieved about 35% color removal efficiency in average. When two strains were selected and applied to the treatment at same time, color removal efficiency was increased up to 65%. While three or more associations of each strain did not show the improvement of color removal. Inhibition effects by $Mn^{2+}\;and\;Fe^{3+}$ on the dye degradation were tested and resulted in no effect under 70 ppm concentration.

  • PDF

Textile Wastewater Treatment by MF-UF Combined Membrane Filtration (MF-UF 분리막 복합공정에 의한 염색가공 폐수처리)

  • Yang, Jeongmok;Park, Chulhwan;Lee, Byunghwan;Kim, Sangyong
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.151-156
    • /
    • 2006
  • Combined membrane process of ceramic microfiltration (MF) and polymer ultrafiltration (UF) was optimized for the removal of color and total organic carbon (TOC) from textile wastewater. Membrane regeneration was performed for the efficient operation by backflushing and chemical cleaning. Flux of 10.3% increased by the pulse backflushing of 1 second every 2 minutes in ceramic microfiltration. Membrane regeneration of 97% was obtained by chemical cleaning with 0.1% sodium hydroxide in polymer ultrafiltration. The removal efficiency of TOC, color and SS (suspended solid) were 84.6%, 97.4% and 100%, respectively. The combined process was found to be suitable for the removal of color and residual organics from textile wastewater.

  • PDF

Color Removal of the Wastewater containing the Pigml:mts using Wastewater Treatment Technologies (안료폐수의 탈색연구)

  • Lee, Byeong-Kyu;Cho, Sung-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.429-439
    • /
    • 2000
  • Various wastewater treatment technologies were applied for decolorization and disposal of the wastewater containing the pigments, which consist of Lake Red C(Barium) or/and Lithol Rubine(Calcium) pigments. In an application of ozonation $COD_{Mn}$ was generally decreased with an increase of amounts of ozone applied, however, the decolorization effect was not that good except for Lithol Rubine series. In an application of Fenton oxidation and electrochemical process, a good $COD_{Mn}$ removal effect for all the pigment wastewater and a slight decolorization effect for a part of Lithol Rubine series were observed. In an application of ultra filtration(UF) and reverse osmosis(RO), an excellent $COD_{Mn}$ removal and decolorization(almost 100%) effects of all the pigment wastewater were observed. Thus the water treated by the UF and RO could be reusable and thus save operating costs of the pigment manufacturing plants.

  • PDF

Color and COD Removal of Rhodamine B Using Ozone, Photocatalyst and Ozone-Complex Process (오존, 광촉매 및 오존-복합 공정을 이용한 Rhodamine B의 색도와 COD 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.662-669
    • /
    • 2007
  • The effect of advanced oxidation processes such as $O_3$, $UV/TiO_2$, $O_3/UV$ and $O_3/UV/TiO_2$ on decolorization and COD removal of Rhodamine B(RhB) wastewater were considered. The results showed that the higher the $O_3$ concentration was, the higher the decolorization observed and the optimum $TiO_2$ dosage was 0.4 g/L in $UV/TiO_2$ and $O_3/UV/TiO_2$ process. $O_3/UV$ process showed the higher initial decolorization rate constant and the shorter termination time for decolorization than those of the $O_3$ process. The decolorization rate constants in various systems followed the order of $O_3/UV/TiO_2>O_3/UV>O_3{\gg}UV/TiO_2$. The decolorization rate of the RhB solution in every processes was more rapid than the mineralization rate identified by COD removal. The latter took longer time for further oxidation. The COD removal rate constants in four systems followed the order of $O_3/UV/TiO_2>O_3/UV>UV/TiO_2{\geqq}O_3$. Among four processes, combined photocatalysis and ozonation$(O_3/UV/TiO_2)$ was the most prospective process for removing color and COD such as dye wastewater.

활성탄 담체가 포함된 Jet-Loop Reactor를 이용한 종합염색폐수처리

  • Park, Jong-Tak;Lee, Gil-Ho;Ryu, Won-Ryul;Jo, Mu-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.406-409
    • /
    • 2000
  • For the effective treatment of dye-processing wastewater, JLR(Jet-Loop Reactor) with active carbon supports were investigated. BOD removal efficiency was found as 99% when influent BOD concentration of dye-processing wastewater was 400 mg/L. $COD_{Mn}$ of effluent removal efficiencies were found as 86${\sim}$ 89% when these of activated sludge reactor were 62${\sim}$72%. Also, color removal efficiencies were found as 84${\sim}$87% when these of activated sludge reactor were 72%${\sim}$77%. After JLR with active carbon supports had been used, all of the $COD_{Mn}$, $COD_{Cr}$ and color removal efficiencies Increased when chemical precipitation was done. Consequently, JLR with active carbon supports was proved to be more excellent than the activated sludge reactor.

  • PDF

Treatment of dye wastewater by emulsion liquid membrane (에멀젼 액막을 이용한 염색 폐수의 처리)

  • 김재림;오준택;김종국;김우식
    • Membrane Journal
    • /
    • v.5 no.4
    • /
    • pp.129-136
    • /
    • 1995
  • This study is concerned with the treatment of dye wastewater by carrier meditated emulsion liquid membrane. Optimum conditions for the removal of anionic dye and cationic dye by the emulsion liquid membrane(ELM) containing Aliquat 336 or D2EHPA were obtained in the batch operation, an actual dye wastewater was tested under these conditions. Dye reagents used were Sirius Red(Direct dye), Reactofix Supra Blue(Reactive dye), and Apollo Blue(Basic dye). The experimental variables were surfactant(Span 80) and carrier(Aliquat 336 or D2EHPA) concentration in the membrane phase, the counter ion($Na_2SO_4$) concentration in the internal phase and the amount of emulsion. Extraction equilibrium arrived within 5 minutes after starting reaction and more than 95% of dye ion could be removed. The carrier concentration in the membrane phase was the most crucial for the removal efficiency, but other variables effected to the reaction time more than the removal efficiency. The dye wastewater was treated under the optimum conditions in two steps. The absorbance at 550nm of wastewater was decreased 0.53 to below 0.03 after 10 minutes treatment.

  • PDF