• Title/Summary/Keyword: 상황인지 시스템

Search Result 8,487, Processing Time 0.035 seconds

Utilizing the Idle Railway Sites: A Proposal for the Location of Solar Power Plants Using Cluster Analysis (철도 유휴부지 활용방안: 군집분석을 활용한 태양광발전 입지 제안)

  • Eunkyung Kang;Seonuk Yang;Jiyoon Kwon;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.79-105
    • /
    • 2023
  • Due to unprecedented extreme weather events such as global warming and climate change, many parts of the world suffer from severe pain, and economic losses are also snowballing. In order to address these problems, 'The Paris Agreement' was signed in 2016, and an intergovernmental consultative body was formed to keep the average temperature rise of the Earth below 1.5℃. Korea also declared 'Carbon Neutrality in 2050' to prevent climate catastrophe. In particular, it was found that the increase in temperature caused by greenhouse gas emissions hurts the environment and society as a whole, as well as the export-dependent economy of Korea. In addition, as the diversification of transportation types is accelerating, the change in means of choice is also increasing. As the development paradigm in the low-growth era changes to urban regeneration, interest in idle railway sites is rising due to reduced demand for routes, improvement of alignment, and relocation of urban railways. Meanwhile, it is possible to partially achieve the solar power generation goal of 'Renewable Energy 3020' by utilizing already developed but idle railway sites and take advantage of being free from environmental damage and resident acceptance issues surrounding the location; but the actual use and plan for these solar power facilities are still lacking. Therefore, in this study, using the big data provided by the Korea National Railway and the Renewable Energy Cloud Platform, we develop an algorithm to discover and analyze suitable idle sites where solar power generation facilities can be installed and identify potentially applicable areas considering conditions desired by users. By searching and deriving these idle but relevant sites, it is intended to devise a plan to save enormous costs for facilities or expansion in the early stages of development. This study uses various cluster analyses to develop an optimal algorithm that can derive solar power plant locations on idle railway sites and, as a result, suggests 202 'actively recommended areas.' These results would help decision-makers make rational decisions from the viewpoint of simultaneously considering the economy and the environment.

A COVID-19 Diagnosis Model based on Various Transformations of Cough Sounds (기침 소리의 다양한 변환을 통한 코로나19 진단 모델)

  • Minkyung Kim;Gunwoo Kim;Keunho Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.57-78
    • /
    • 2023
  • COVID-19, which started in Wuhan, China in November 2019, spread beyond China in 2020 and spread worldwide in March 2020. It is important to prevent a highly contagious virus like COVID-19 in advance and to actively treat it when confirmed, but it is more important to identify the confirmed fact quickly and prevent its spread since it is a virus that spreads quickly. However, PCR test to check for infection is costly and time consuming, and self-kit test is also easy to access, but the cost of the kit is not easy to receive every time. Therefore, if it is possible to determine whether or not a person is positive for COVID-19 based on the sound of a cough so that anyone can use it easily, anyone can easily check whether or not they are confirmed at anytime, anywhere, and it can have great economic advantages. In this study, an experiment was conducted on a method to identify whether or not COVID-19 was confirmed based on a cough sound. Cough sound features were extracted through MFCC, Mel-Spectrogram, and spectral contrast. For the quality of cough sound, noisy data was deleted through SNR, and only the cough sound was extracted from the voice file through chunk. Since the objective is COVID-19 positive and negative classification, learning was performed through XGBoost, LightGBM, and FCNN algorithms, which are often used for classification, and the results were compared. Additionally, we conducted a comparative experiment on the performance of the model using multidimensional vectors obtained by converting cough sounds into both images and vectors. The experimental results showed that the LightGBM model utilizing features obtained by converting basic information about health status and cough sounds into multidimensional vectors through MFCC, Mel-Spectogram, Spectral contrast, and Spectrogram achieved the highest accuracy of 0.74.

A Study on Human-Robot Interaction Trends Using BERTopic (BERTopic을 활용한 인간-로봇 상호작용 동향 연구)

  • Jeonghun Kim;Kee-Young Kwahk
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.185-209
    • /
    • 2023
  • With the advent of the 4th industrial revolution, various technologies have received much attention. Technologies related to the 4th industry include the Internet of Things (IoT), big data, artificial intelligence, virtual reality (VR), 3D printers, and robotics, and these technologies are often converged. In particular, the robotics field is combined with technologies such as big data, artificial intelligence, VR, and digital twins. Accordingly, much research using robotics is being conducted, which is applied to distribution, airports, hotels, restaurants, and transportation fields. In the given situation, research on human-robot interaction is attracting attention, but it has not yet reached the level of user satisfaction. However, research on robots capable of perfect communication is steadily being conducted, and it is expected that it will be able to replace human emotional labor. Therefore, it is necessary to discuss whether the current human-robot interaction technology can be applied to business. To this end, this study first examines the trend of human-robot interaction technology. Second, we compare LDA (Latent Dirichlet Allocation) topic modeling and BERTopic topic modeling methods. As a result, we found that the concept of human-robot interaction and basic interaction was discussed in the studies from 1992 to 2002. From 2003 to 2012, many studies on social expression were conducted, and studies related to judgment such as face detection and recognition were conducted. In the studies from 2013 to 2022, service topics such as elderly nursing, education, and autism treatment appeared, and research on social expression continued. However, it seems that it has not yet reached the level that can be applied to business. As a result of comparing LDA (Latent Dirichlet Allocation) topic modeling and the BERTopic topic modeling method, it was confirmed that BERTopic is a superior method to LDA.

Sensitivity analysis of the FAO Penman-Monteith reference evapotranspiration model (FAO Penman-Monteith 기준증발산식 민감도 분석)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.285-299
    • /
    • 2023
  • Estimating the evapotranspiration is very important factor for effective water resources management, and FAO Penman-Monteith (FAO P-M) model has been applied for reference evapotranspiration estimation by many researchers. However, because various input data are required for the application of FAO P-M model, understanding the effect of each input data on FAO P-M model is necessary. Therefore, in this study, for 56 study stations located in South Korea, the effects of 8 meteorological factors (maximum and minimum temperature, wind speed, relative humidity, solar radiation, vapor pressure deficit, net radiation, ground heat flux), energy and aerodynamic terms of FAO P-M model, and elevation on FAO P-M reference evapotranspiration (RET) estimation were analyzed. The relative sensitivity analysis was performed to determine how 10% increment of each specific independent variable affects a reference evapotranspiration under given set of condition that other independent variables are unchanged. Furthermore, to select the 5 representative stations and perform the monthly relative sensitivity analysis for those stations, 56 study stations were classified into 5 clusters using cluster analysis. The study results showed that net radiation was turned out to be the most sensitive factor in 8 meteorological factors for 56 study stations. The next most sensitive factor was relative humidity, solar radiation, maximum temperature, vapor pressure deficit and wind speed, followed by minimum temperature in order. Ground heat flux was the least sensitive factor. In case of ground surface condition, elevation showed very low positive relative sensitivity. Relativity sensitivities of energy and aerodynamic terms of FAO P-M model were 0.707 for energy term and 0.293 for aerodynamic term respectively, indicating that energy term was more contributable than aerodynamic term for reference evapotranspiration. The monthly relative sensitivities of meteorological factors showed the seasonal effects, and also the relative sensitivity of elevation showed different pattern each other among study stations. Therefore, for the application of FAO P-M model, the seasonal and regional sensitivity differences of each input variable should be considered.

Export Prediction Using Separated Learning Method and Recommendation of Potential Export Countries (분리학습 모델을 이용한 수출액 예측 및 수출 유망국가 추천)

  • Jang, Yeongjin;Won, Jongkwan;Lee, Chaerok
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.69-88
    • /
    • 2022
  • One of the characteristics of South Korea's economic structure is that it is highly dependent on exports. Thus, many businesses are closely related to the global economy and diplomatic situation. In addition, small and medium-sized enterprises(SMEs) specialized in exporting are struggling due to the spread of COVID-19. Therefore, this study aimed to develop a model to forecast exports for next year to support SMEs' export strategy and decision making. Also, this study proposed a strategy to recommend promising export countries of each item based on the forecasting model. We analyzed important variables used in previous studies such as country-specific, item-specific, and macro-economic variables and collected those variables to train our prediction model. Next, through the exploratory data analysis(EDA) it was found that exports, which is a target variable, have a highly skewed distribution. To deal with this issue and improve predictive performance, we suggest a separated learning method. In a separated learning method, the whole dataset is divided into homogeneous subgroups and a prediction algorithm is applied to each group. Thus, characteristics of each group can be more precisely trained using different input variables and algorithms. In this study, we divided the dataset into five subgroups based on the exports to decrease skewness of the target variable. After the separation, we found that each group has different characteristics in countries and goods. For example, In Group 1, most of the exporting countries are developing countries and the majority of exporting goods are low value products such as glass and prints. On the other hand, major exporting countries of South Korea such as China, USA, and Vietnam are included in Group 4 and Group 5 and most exporting goods in these groups are high value products. Then we used LightGBM(LGBM) and Exponential Moving Average(EMA) for prediction. Considering the characteristics of each group, models were built using LGBM for Group 1 to 4 and EMA for Group 5. To evaluate the performance of the model, we compare different model structures and algorithms. As a result, it was found that the separated learning model had best performance compared to other models. After the model was built, we also provided variable importance of each group using SHAP-value to add explainability of our model. Based on the prediction model, we proposed a second-stage recommendation strategy for potential export countries. In the first phase, BCG matrix was used to find Star and Question Mark markets that are expected to grow rapidly. In the second phase, we calculated scores for each country and recommendations were made according to ranking. Using this recommendation framework, potential export countries were selected and information about those countries for each item was presented. There are several implications of this study. First of all, most of the preceding studies have conducted research on the specific situation or country. However, this study use various variables and develops a machine learning model for a wide range of countries and items. Second, as to our knowledge, it is the first attempt to adopt a separated learning method for exports prediction. By separating the dataset into 5 homogeneous subgroups, we could enhance the predictive performance of the model. Also, more detailed explanation of models by group is provided using SHAP values. Lastly, this study has several practical implications. There are some platforms which serve trade information including KOTRA, but most of them are based on past data. Therefore, it is not easy for companies to predict future trends. By utilizing the model and recommendation strategy in this research, trade related services in each platform can be improved so that companies including SMEs can fully utilize the service when making strategies and decisions for exports.

Enhancing the performance of the facial keypoint detection model by improving the quality of low-resolution facial images (저화질 안면 이미지의 화질 개선를 통한 안면 특징점 검출 모델의 성능 향상)

  • KyoungOok Lee;Yejin Lee;Jonghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.171-187
    • /
    • 2023
  • When a person's face is recognized through a recording device such as a low-pixel surveillance camera, it is difficult to capture the face due to low image quality. In situations where it is difficult to recognize a person's face, problems such as not being able to identify a criminal suspect or a missing person may occur. Existing studies on face recognition used refined datasets, so the performance could not be measured in various environments. Therefore, to solve the problem of poor face recognition performance in low-quality images, this paper proposes a method to generate high-quality images by performing image quality improvement on low-quality facial images considering various environments, and then improve the performance of facial feature point detection. To confirm the practical applicability of the proposed architecture, an experiment was conducted by selecting a data set in which people appear relatively small in the entire image. In addition, by choosing a facial image dataset considering the mask-wearing situation, the possibility of expanding to real problems was explored. As a result of measuring the performance of the feature point detection model by improving the image quality of the face image, it was confirmed that the face detection after improvement was enhanced by an average of 3.47 times in the case of images without a mask and 9.92 times in the case of wearing a mask. It was confirmed that the RMSE for facial feature points decreased by an average of 8.49 times when wearing a mask and by an average of 2.02 times when not wearing a mask. Therefore, it was possible to verify the applicability of the proposed method by increasing the recognition rate for facial images captured in low quality through image quality improvement.

.A Study on Parents' Transnational Educational Passion in the Tendency of Globalization : The Potential and Limitations of Educational Nomadism (세계화의 흐름에서 학부모의 초국가적 교육열 - 교육노마디즘의 가능성과 한계를 중심으로 -)

  • Kim, So-Hee
    • Korean Journal of Culture and Arts Education Studies
    • /
    • v.5 no.1
    • /
    • pp.97-147
    • /
    • 2010
  • Under the recent trend of globalization, a new proposal on education has not been able to avoid the request for multi-cultural trend. Furthermore, education has been exposed to circumstances which are far different from the previous situations in which global cooperation and intercultural understanding have been more emphasized. 'Educational Nomadism'is a metaphor of creating new value and significance of education. In fact, transnational education which could be a crisis and opportunity at the same time has recently been the mainstream throughout the world. In terms of education, Korea has encountered base hollowing-out in which excessive dependence on the US education and autonomous education coexist. In fact, the world has spent a lot of time and money to have better educational background on a resume through redundant expense by the government and parents. Under this critical situation, it's urgent to change Korea's modern education into a creative educational system in connection with an advanced foreign educational system and further develop the advantage of Korea's education. A parent's investment in his/her child is a support to create new culture as well as an assistance for hope and better future of Korean education. A new direction of parents' education fever that has opened a door to global communitas can stir up infinite potential through which the flow of education fever can be changed to the resources of new civilization. The global cooperation and efforts for communitas means the communication with this world. Through this communication, the culture in which people are forced to zero-sum competition can leap into the education for change of civilization which creates pleasure of self sufficiency and donation.

Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques (EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용)

  • Hyunsang Lee;Wonseok Lee;Bogeun Jo;Heejun Lee;Sangjin Oh;Sangwoo You;Maru Nam;Hyunsik Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.471-480
    • /
    • 2023
  • The Korean construction order volume in South Korea grew significantly from 91.3 trillion won in public orders in 2013 to a total of 212 trillion won in 2021, particularly in the private sector. As the size of the domestic and overseas markets grew, the scale and complexity of EPC (Engineering, Procurement, Construction) projects increased, and risk management of project management and ITB (Invitation to Bid) documents became a critical issue. The time granted to actual construction companies in the bidding process following the EPC project award is not only limited, but also extremely challenging to review all the risk terms in the ITB document due to manpower and cost issues. Previous research attempted to categorize the risk terms in EPC contract documents and detect them based on AI, but there were limitations to practical use due to problems related to data, such as the limit of labeled data utilization and class imbalance. Therefore, this study aims to develop an AI model that can categorize the contract terms based on the FIDIC Yellow 2017(Federation Internationale Des Ingenieurs-Conseils Contract terms) standard in detail, rather than defining and classifying risk terms like previous research. A multi-text classification function is necessary because the contract terms that need to be reviewed in detail may vary depending on the scale and type of the project. To enhance the performance of the multi-text classification model, we developed the ELECTRA PLM (Pre-trained Language Model) capable of efficiently learning the context of text data from the pre-training stage, and conducted a four-step experiment to validate the performance of the model. As a result, the ensemble version of the self-developed ITB-ELECTRA model and Legal-BERT achieved the best performance with a weighted average F1-Score of 76% in the classification of 57 contract terms.

Exploring Mask Appeal: Vertical vs. Horizontal Fold Flat Masks Using Eye-Tracking (마스크 매력 탐구: 아이트래킹을 활용한 수직 접이형 대 수평 접이형 마스크 비교 분석)

  • Junsik Lee;Nan-Hee Jeong;Ji-Chan Yun;Do-Hyung Park;Se-Bum Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.271-286
    • /
    • 2023
  • The global COVID-19 pandemic has transformed face masks from situational accessories to indispensable items in daily life, prompting a shift in public perception and behavior. While the relaxation of mandatory mask-wearing regulations is underway, a significant number of individuals continue to embrace face masks, turning them into a form of personal expression and identity. This phenomenon has given rise to the Fashion Mask industry, characterized by unique designs and colors, experiencing rapid growth in the market. However, existing research on masks is predominantly focused on their efficacy in preventing infection or exploring attitudes during the pandemic, leaving a gap in understanding consumer preferences for mask design. We address this gap by investigating consumer perceptions and preferences for two prevalent mask designs-horizontal fold flat masks and vertical fold flat masks. Through a comprehensive approach involving surveys and eye-tracking experiments, we aim to unravel the subtle differences in how consumers perceive these designs. Our research questions focus on determining which design is more appealing and exploring the reasons behind any observed differences. The study's findings reveal a clear preference for vertical fold flat masks, which are not only preferred but also perceived as unique, sophisticated, three-dimensional, and lively. The eye-tracking analysis provides insights into the visual attention patterns associated with mask designs, highlighting the pivotal role of the fold line in influencing these patterns. This research contributes to the evolving understanding of masks as a fashion statement and provides valuable insights for manufacturers and marketers in the Fashion Mask industry. The results have implications beyond the pandemic, emphasizing the importance of design elements in sustaining consumer interest in face masks.

An Empirical Study on the Effects of Seniors' Growth·Fixed Mindset and Entrepreneurial Ability on Entrepreneurial Intentions: Focusing on the Mediating Effects of Entrepreneurship Efficasy (시니어의 성장·고정 마인드셋과 창업역량이 창업의도에 미치는 영향에 관한 실증연구: 창업효능감의 매개효과 중심으로)

  • Jae Yul, Lee;Tae Kwan, Ha
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.6
    • /
    • pp.89-104
    • /
    • 2022
  • Entrepreneurship by seniors who have accumulated skills and expertise in the industrial field is very important from a social point of view. This study aimed at seniors to find out the major start-up capabilities of seniors in an economic situation where instability factors and uncertainties are amplified due to the social structure of jobs that has changed due to COVID-19 during the 4th industrial revolution and the rapidly progressing high interest rates and global supply chain problems. The purpose of this study was to empirically verify how variables affect entrepreneurial intention. In addition, from the perspective of mindset, which is the individual psychological characteristic of pre-entrepreneurs, we tried to empirically verify whether growth mindset and fixed mindset have a significant effect on senior entrepreneurship intention. The psychological characteristics of founders were approached from the perspective of mindset, and an attempt was made to apply them to the field of entrepreneurship and to obtain practical implications. This study empirically analyzed the effects of growth mindset, fixed mindset, technical competency, network competency, and funding competency, which are components of mindset, on senior entrepreneurial intention, and verified the mediating effect of entrepreneurial efficacy. As a result of the empirical analysis, it was verified that growth mindset and technological competency had a positive (+) effect on entrepreneurial intention. In addition, it was verified that the mediating effect of entrepreneurial efficacy was significant in the influence of growth mindset and technological competency on entrepreneurial intention, and it was verified that growth mindset and technological competency are important variables in senior entrepreneurship. The study results provide the following policy implications. In order to activate senior entrepreneurship, first, to maximize the effect of founder education, programs such as customized entrepreneurship education that match the growth mindset characteristics, which are the psychological characteristics of founders, are needed. Second, it is required to expand the base of technology startups by expanding government support, such as expanding low-interest policy financing, for senior startups with technological capabilities and expertise. Third, it is necessary to provide institutional support for starting a business, such as providing a start-up program even before retirement, so that the expertise and technology accumulated by seniors can be linked to start-ups even after retirement.