• 제목/요약/키워드: 상호상관정합

검색결과 29건 처리시간 0.018초

다차원 명암도 증감 기반 효율적인 영상정합 (An Efficient Image Registration Based on Multidimensional Intensity Fluctuation)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.287-293
    • /
    • 2012
  • 본 논문에서는 영상의 다차원 명암도 증감에 기반을 둔 유사도 측정에 의한 효율적인 영상정합 방법을 제안하였다. 여기서 다차원 명암도는 영상의 4방향을 고려한 유사성 판정으로 영상이 가지는 속성을 더욱 더 많이 반영하기 위함이고, 명암도 증감은 인접 픽셀간의 밝기변화를 고려함으로써 좀 더 포괄적으로 유사성을 측정하기 위함이다. 또한 측정된 4방향 각각의 명암도 증감에 대한 정규상호상관계수를 구하고, 그 각각에 바탕을 둔 전체 정규상호상관계수, 각 방향의 상관계수에 대한 산술평균과 단순 곱 및 최대값으로 정규화된 상관계수의 산술평균과 단순 곱으로 정의된 유사도 계수로 각각 정합을 측정하였다. 제안된 방법을 22개의 243*243 픽셀 얼굴영상과 9개의 500*500 픽셀 인물영상을 대상으로 각각 실험한 결과, 영상의 속성을 잘 반영한 우수한 정합성능이 있음을 확인하였다. 특히 각 방향의 상관계수에 대한 산술평균 유사도가 가장 우수한 신뢰성을 가지는 정합척도임을 알 수 있었다.

영역기반 정합 기법 및 TERCOM에 기반한 지형 참조 항법 시뮬레이션 (Terrain Referenced Navigation Simulation using Area-based Matching Method and TERCOM)

  • 이보미;권재현
    • 한국측량학회지
    • /
    • 제28권1호
    • /
    • pp.73-82
    • /
    • 2010
  • 지형 참조 항법 기술 중 하나인 TERCOM은 순항미사일에 장착되어 있는 시스템으로 현재까지도 지속적으로 연구되고 있는 기술이다. 본 논문에서는 영역기반 정합 기법과 확장형 칼만필터를 이용하여 TERCOM에 기반한 지형 참조 항법을 시뮬레이션을 통해 분석하였다. 영역기반 정합의 유사성 분석에는 평균제곱오차 알고리즘과 상호상관정합 알고리즘을 적용하였다. 기압 고도계와 레이더 고도계, SRTM DTM을 탑재한 항체가 시속 1000km로 545초 간 장방형 궤적으로 비행하도록 시뮬레이션 하였으며, 그 결과 평균제품오차 기반 알고리즘의 거리 오차의 표준연차는 99.6m 상호상판정합 기반 알고리즘은 34.3m로 상호상관정합 기반 알고리즘이 상대적으로 지형에 덜 민감하고 두 알고리즘 모두 지형의 기복 정도에 따라 항법 정밀도의 편차가 큰 것으로 나타났다. 따라서 완만한 지형에도 민감한 알고리즘과 관성항법 적분오차 증가에 따라 적절한 탐색영역의 크기 결정, 비행환경에 따라 요구되는 최적의 지형 데이터베이스의 해상도 결정 등에 대한 연구가 수행되어야 할 것으로 판단된다.

정밀한 다중센서 영상정합을 위한 통계적 상관성의 증대기법 (Enhancement of Inter-Image Statistical Correlation for Accurate Multi-Sensor Image Registration)

  • 김경수;이진학;나종범
    • 대한전자공학회논문지SP
    • /
    • 제42권4호
    • /
    • pp.1-12
    • /
    • 2005
  • 영상정합은 동일한 장면에 대해서 서로 다른 시간 혹은 서로 다른 특성의 센서로부터 서로 다른 위치에서 얻은 영상들의 위치적 대응관계를 찾는 기법이다. 이 논문에서는 특성이 다른 적외선 센서와 광학 센서로부터 얻은 영상의 정합을 위한 새로운 알고리즘을 제안한다. 지금까지 제안된 서로 다른 특성의 영상을 위한 정합기법은 크게 특징점 기반 영상정합기법과 밝기값 기반 영상정합기법으로 구분될 수 있다. 특징점 기반의 영상정합기법은 정확하게 대응하는 특징점을 선택하는 것이 성능에 결정적인 영향을 준다 그러나 적외선 영상과 가시광선 영상에서는 특징점이 서로 같지 않은 경우가 많기 때문에 강인하지 못하다 그리고 밝기 값 기반의 정합기법에서는 정규상호정보를 유사성 척도로 사용한 영상정합기법이 가장 좋은 성능을 제공하는 것으로 알려져 있다. 그러나 정규상호정보 기반의 영상정합기법은 두 영상의 통계적 상관성이 전역적이어야 한다는 가정을 전제하는데, 적외선 영상과 가시광선 영상에서는 이를 보장하지 못하는 경우가 많아 정규상호정보를 유사성 척도로 사용하는 영상정합기법에서도 좋은 성능을 기대하기 힐들다. 따라서 이 논문에서는 적외선 영상과 가시광선 영상의 통계적 상관성의 해석에 기반한 두 단계 영상정합기법을 제안한다. 정확하고 강인한 정합을 위해서 첫 단계에서는 두 영상에서 통계적 상관성이 높은 부분을 추출하는 ESCR기법과 두 영상을 통계적 상관성이 높도록 필터링하는 ESCF기법을 수행한다. 그리고 두 번째 단계에서는 첫 단계에서의 결과 영상에 대해서 정규상호정보를 유사성 척도로 한 영상정합을 수행한다. 다양한 적외선 영상과 가시광선 영상을 이용한 실험으로부터 제안하는 두 단계 영상정합기법이 기존의 정규상호정보 기반의 영상정합기법에 비해 정확도와 강인함, 그리고 실행 속도의 측면에서 더욱 향상된 성능을 제공함을 확인하였다.

가우시안 가중치 거리지도를 이용한 PET-CT 뇌 영상정합 (Co-registration of PET-CT Brain Images using a Gaussian Weighted Distance Map)

  • 이호;홍헬렌;신영길
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권7호
    • /
    • pp.612-624
    • /
    • 2005
  • 본 논문에서는 PET-CT 뇌 영상융합을 위해 가우시안 가중치 거리지도를 이용한 표면기반 영상정합을 제안한다. 제안방법은 중요 세 단계로 표면 특징점 추출, 가우시안 가중치 거리지도 생성, 가중치기반 유사도 평가로 구성된다. 첫째, PET 영상과 CT 영상에서 삼차원 역 영역성장법을 이용하여 머리영역을 분할하고 머리 영역과 같이 분할된 잡음 영역을 영역성장법기반 레이블링을 이용한 영역 크기 비교를 통해 제거한 후 선명화 처리 필터를 적용하여 머리 표면 특징점을 추출한다. 둘째, CT 영상에서 추출한 표면 특징점에 가우시안 가중치 거리지도를 생성하여 큰 변위에서도 최적의 위치로 견고하게 수렴하도록 한다. 셋째, 가중치기반 상호상관관계는 PET 영상에서 추출한 표면 특징점과 대응되는 CT 영상의 가우시안 가중치 거리지도를 이용하여 최적 위치를 탐색한다. 본 논문에서는 제안방법의 정확성과 견고성 검사를 위해 인공데이타를 이용하고, 수행시간과 육안평가를 위해 임상데이타를 이용한다. 정확성 검사는 임의로 변환된 인공데이타에 제안방법을 적용한 후 추출된 최적화 변환벡터와의 오차를 제곱근평균제곱오차를 이용하여 평가한다. 견고성 검사는 큰 변위와 잡음을 가지는 인공데이타에서 가중치기반 상호상관관계가 최적의 위치에서 최대를 이루는지를 평가한다 실험 결과 제안한 표면기반 영상정합이 기존 표면기반 영상정합보다 정확하고 견고하게 수렴됨을 알 수 있다.

정규 상호정보와 기울기 방향 정보를 이용한 다중센서 영상 정합 알고리즘 (Multi-sensor Image Registration Using Normalized Mutual Information and Gradient Orientation)

  • 주재용;김민재;구본화;고한석
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.37-48
    • /
    • 2012
  • 영상정합은 동일한 장면에 대해서 서로 다른 시점, 서로 다른 시간 혹은 서로 다른 특성의 센서로부터 얻은 영상들의 위치 관계를 대응 시켜주는 기법이다. 본 논문에서는 가시광선 영상 및 적외선 영상과 같은 다중센서 영상을 정합하기 위한 방법을 제안한다. 영상정합은 두 영상에서 특징점을 추출하고, 특징점 간의 대응 관계를 구함으로써 이루어진다. 기존의 다중센서 영상 정합을 위한 방법으로 정규상호정보를 이용하여 대응 특징점을 선별하는 방법이 제안되었다. 정규상호정보 기반의 영상정합 기법은 두 영상의 통계적 상관성이 전역적이어야 한다는 가정을 전제한다. 그러나 가시광선 영상과 적외선 영상에서는 이를 보장하지 못하는 경우가 많아 대응 특징점의 정확도가 저하되기 때문에 기존의 방법은 안정적인 정합 성능을 기대하기 힘들다. 본 논문에서는 영상의 공간정보로서 기울기 방향정보를 정규상호정보와 결합함으로써, 대응 특징점의 정확도를 향상시켰으며 이를 통해 정확성 및 안정적인 영상 정합 결과를 도모하였다. 다양한 실험 결과를 통해 제안하는 방법의 효용성을 증명하였다.

사전검수영역기반정합법과 't-분포 과대오차검출법'을 이용한 위성영상의 '자동 영상좌표 상호등록' (Automated Satellite Image Co-Registration using Pre-Qualified Area Matching and Studentized Outlier Detection)

  • 김종홍;허준;손홍규
    • 대한토목학회논문집
    • /
    • 제26권4D호
    • /
    • pp.687-693
    • /
    • 2006
  • 최근 전 지구적, 혹은 대규모 지역의 분석 및 모니터링을 위한 위성영상의 사용이 늘어나고 있으며 이를 처리하기 위해 빠르고 편리한 '영상좌표 상호등록'방법이 요구되고 있다. 이러한 '영상좌표 상호등록'은 위성의 센서모델 및 천체력 자료를 이용하는 엄밀 모델식을 이용하는 방법과 기 존재하는 기준 영상(Reference image)을 사용하거나 혹은 수치지도를 사용하는 경험적 방법의 두 가지로 분류할 수 있다. '영상좌표 상호등록'의 효율성을 높이기 위해서 저자는 '사전검수 영역기반정합법'(Pre-qualified area matching)을 사용하였다. 이는 Canny 연산자를 이용한 경계추출법, 교차상관계수를 사용한 영역기반정합법(Area based matching), t-분포를 이용하여 95%의 신뢰구간 내에서 과대오차 소거법을 적용한 방법이다. 이러한 사전검수(Pre-qualification) 과정을 통해 연산시간을 현저히 단축시켰고, '영상좌표 상호등록'의 정확도 역시 향상됨을 알 수 있었다. 제안한 알고리즘을 사용하여 프로그램을 작성하고, 한반도 Landsat ETM+ 영상 3장을 이용하여 테스트하였다. 정합점 간의 평균제곱오차는 0.435 영상소, 정합점은 평균 25,573개로 나타났다. 연산 시간은 3.0GHz 1Gb RAM 사양의 컴퓨터에서 평균 약 4.2분으로 나타났다.

다중 모달 정합에 의한 Visible Human의 뼈 분할 방법 (Bone Segmentation Method of Visible Human using Multimodal Registration)

  • 이호;김동성;강흥식
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.719-726
    • /
    • 2003
  • 본 논문에서는 Visible Human 컬러 단면 영상에서 인접한 지방 영역과 색상 특성이 유사하여 구별이 매우 힘든 뼈 영역을 분할하기 위해 다중 모달 정합 방법을 제안한다. 뼈와 그 인접영역의 구별이 뚜렷한 CT 영상에서 뼈를 분할하고 두 영상의 정합을 이용하여 컬러 영상에서 최종 뼈 분할을 수행한다. CT 영상에서 뼈의 분할 방법은 임계값 기반 방법을 사용하였고, 정합은 두 영상에서 신체 부위를 임계값 기반의 방법을 사용하여 분할된 객체들의 경계를 상호 상관관계(cross-correlation)방법을 사용하여 수행하였다. 제안된 방법은 Visible Human 컬러 단면 영상 중에 뼈와 인접 지방이 유사하여 그 분할이 어려운 머리부위와 다리부위에 적용하여 고무적인 결과론 얻었다.

고해상도 3차원 상호상관 PIV 알고리듬 개발 (Development of High-resolution 3-D PIV Algorithm by Cross-correlation)

  • 김미영;최장운;이현;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.410-416
    • /
    • 2001
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity field of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. In this study, stereo photogrammetty was applied for the 3-D matching of tracer particles. Epipolar line was used to decect the stereo pair. 3-D CFD data was used to estimate algorithm. 3-D position data of the first frame and the second frame was used to find velocity vector. Continuity equation was applied to extract error vector. The algorithm result involved error vecotor of about 0.13 %. In Pentium III 450MHz processor, the calculation time of cross-correlation for 1500 particles needed about 1 minute.

  • PDF

수렴각에 따른 KOMPSAT-3·3A호 영상 간 정밀 상호좌표등록 결과 분석 (Fine Co-registration Performance of KOMPSAT-3·3A Imagery According to Convergence Angles)

  • 한유경;김태헌;김예지;이정호
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.491-498
    • /
    • 2019
  • 본 연구는 KOMPSAT-3 및 3A호 영상 간 상호좌표등록을 수행할 당시에 두 영상이 보이는 수렴각(convergence angle)의 크기에 따라서 상호좌표등록의 정확도가 어떻게 달라지는지에 대한 분석을 수행하였다. 고해상도 위성영상의 메타데이터에서 제공하는 영상의 좌표정보를 이용하여 영상 정합을 수행하기 위한 탐색영역을 줄일 수 있으므로, 본 연구에서는 좁은 탐색영역에서 정합 신뢰도가 높은 영역기반 정합쌍 추출 기법 중 하나인 상호정보(mutual information) 기법을 활용하였다. 상대적으로 해상도가 낮은 다중분광 영상을 이용하여 초기 상호좌표등록을 수행하여 초기 위치관계를 파악하고, 보다 정밀한 상호좌표등록을 위해 전정색 영상의 관심대상지역을 중심으로 정밀 상호좌표등록을 수행하였다. 대전지역에서 촬영된 16장의 KOMPSAT-3 및 3A호 영상으로 120개의 조합을 구성하여 실험을 수행하였다. 실험결과, 영상 간 수렴각 크기와 상호좌표등록 정확도 사이의 상관계수 값은 0.59를 보였고, 영상 간의 수렴각 크기가 클수록 상호좌표등록 정확도가 떨어지는 경향을 보이는 것을 확인하였다.

명암도 기반의 의료영상 정합을 위한 최적화 방법 (Optimization Methods for Medical Images Registration based on Intensity)

  • 이명은;김수형;임준식
    • 전자공학회논문지CI
    • /
    • 제46권6호
    • /
    • pp.1-6
    • /
    • 2009
  • 본 논문에서는 명암도 기반의 의료영상 정합을 위한 최적화 방법을 소개하고자 한다. 제안하는 최적화 방법은 조건부 확률의 엔트로피에 기반한 측도를 사용함으로써 수행된다. 본 논문에서는 정합을 수행하기 위해서 주어진 두 영상의 명암도에 대한 조인트 히스토그램으로부터 계산된 조건부 엔트로피를 개선하여 새로운 정합 방법의 측도로써 정의한다. 그리고 기존의 명암도 기반의 방법들 즉, 명암도 차이 측정을 이용한 방법, 상관계수를 이용한 방법, 상호정보량을 이용한 방법 등과 비교 실험을 수행한다. 단일 모달리티 뇌 MR 영상을 이용한 실험과 서로 다른 모달리티 뇌 MR 영상과 CT 영상의 정합 결과를 통해서 성능을 평가한다. 실험결과에 의하면 제안한 방법이 기존의 최적화 방법들 널다 최적화 하는데 소요되는 시간이 더 빠르고 정확한 정합이 됨을 알 수 있다.