• 제목/요약/키워드: 상품추천시스템

검색결과 294건 처리시간 0.028초

웹로그를 활용한 고속 하이브리드 해외여행 상품 추천시스템 (Rapid Hybrid Recommender System with Web Log for Outbound Leisure Products)

  • 이규식;윤지원
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권12호
    • /
    • pp.646-653
    • /
    • 2016
  • 해외여행시장은 매년 가파르게 성장하고 있는 산업중 하나이며 2016년 11조의 시장을 형성하고 있다. 거대한 시장형성과는 달리 해외여행상품 추천에 대한 국내연구는 전무한 상태이다. 많은 상품 추천 방법들이(협업적 필터링, 내용기반 필터링) 기존 구매 내역을 대상으로 하거나 혹은 상품의 유사성을 이용한 연구들이 주를 이루고 있다. 이러한 연구들은 연산할 데이터의 양이 많아질 경우 속도의 저하와 데이터가 충분히 확보되지 못한 상황 하에서는 좋은 성능을 보여주지 못하고 있다. 해외 여행상품의 특성상 1-2년에 한번정도의 구매패턴과 상품들의 가격대가 상대적으로 높으며, 동일 상품의 구매가 거의 없는 특징이 있기 때문에 일반적인 상품추천 시스템의 고객 프로파일링 방법으로는 적용에 한계가 있다. 이에 웹사용성(Web Usage Mining)을 통한 고객 프로파일링 기법, 데이터의 희소성 문제를 해결하기 위한 연관규칙 알고리즘과 규칙 기반 알고리즘을 결합하여 고속의 상품 추천시스템 방법을 제안한다. 본 논문에서는 연관규칙 방법에서 가장 많이 사용되어지는 Apriori 방법, 규칙기반 방법(Rule Base) 과 실제 여행사의 웹로그를 사용하여 46%라는 높은 추천 성능의 결과를 검증하였으며, 상품의 개수와 고객의 수가 상품추천 처리 속도에 영향을 주지 않으며, 실제 커머셜한 환경 하에서도 1초이내에 상품을 추천해줄 수 있는 결과를 보여준다.

리뷰 데이터 마이닝을 이용한 하이브리드 추천시스템 개발: Amazon Kindle Store 데이터 분석사례 (Development of Hybrid Recommender System Using Review Data Mining: Kindle Store Data Analysis Case)

  • 장예화;이청용;최일영;김재경
    • 경영정보학연구
    • /
    • 제23권1호
    • /
    • pp.155-172
    • /
    • 2021
  • 최근 온라인 상품 구매의 증가로 인해 사용자의 선호에 맞는 상품을 추천해주는 시스템이 지속적으로 연구되고 있다. 추천 시스템은 사용자들에게 개인화된 상품 추천 서비스를 제공하는 시스템으로 사용자가 상품에 남긴 평점을 이용한 협업 필터링(Collaborative Filtering)이 가장 널리 쓰이는 추천 방법이다. 협업 필터링에서 상품 간의 유사도 계산은 시간이 많이 소요되는데, 특히 리뷰 데이터와 같은 빅데이터를 사용할 경우 더욱 많은 시간을 소요한다. 그래서 본 연구에서는 리뷰 데이터 마이닝을 이용하여 상품 간의 유사도 계산을 빠르게 수행할 수 있으면서 정확도를 높일 있도록 2단계(2-Phase) 방법을 이용한 하이브리드 추천시스템 방식을 제안한다. 이를 위해 온라인 전자책 상거래 상점인 아마존 킨들 스토어(Amazon Kindle Store)의 약 98만 개의 온라인 소비자 평점과 리뷰 데이터를 수집하였다. 실험 결과 본 연구에서 제안한 사용자의 평점과 리뷰를 단계적으로 반영한 하이브리드 추천 방식이 전통적인 추천 방식과 비교하여 추천 시간은 비슷하였으나 높은 정확도를 나타내는 것을 확인하였다. 따라서 제안한 방법을 사용하면 사용자가 선호하는 상품을 빠르고 정확하게 추천함으로써 고객의 만족을 높여서 기업의 매출 증대에 기여할수 있을 것으로 기대된다.

퍼지 추론을 통한 규칙 기반의 보험상품 추천 및 설계 시스템 구현 (Implementation of Rule Based Insurance Product Recommend and Design System using Fuzzy Inference)

  • 박지수;이영훈;김경섭;정석재
    • 한국전자거래학회지
    • /
    • 제12권1호
    • /
    • pp.99-122
    • /
    • 2007
  • 규칙 기반 시스템은 업무 담당자의 비즈니스 노하우 및 전문 지식에 대한 처리는 물론, 기업의 비즈니스 로직까지 처리하여 새로운 비즈니스 모델 변화와 개선요구에 대해 즉각적으로 대응할 수 있는 규칙 기반 추론 엔진으로, 최근 다양한 산업으로의 적용이 시도되고 있다. 이에 이 논문에서는 규칙 기반 시스템 적용 사례의 일환으로, 다양한 소비자 니즈, 수많은 종류의 상품, 그리고 시시각각 변하는 대내외 환경에 민감하게 영향을 받는 보험 산업에서의 효율적인 보험 상품 추천과 설계를 위한 규칙 기반의 보험 상품 추천 및 설계 시스템을 설계하고 구현하고자 한다. 개발된 시스템은 퍼지추론 과정을 통해 고객의 개인정보와 기존 가입고객의 가입정보를 이용하여 보험상품 설계를 원하는 고객에게 맞춤형 보험상품을 추천하고 설계하고자 한다. 이러한 시도는 향후 보험 산업에 있어서 상품에 대한 다양한 고객들의 니즈를 즉각적으로 판단하고 대응하여 보다 정확하고, 고객 개개인의 욕구에 맞는 맞춤형 상품추천 및 설계를 위한 핵심 기술로서 자리 잡을 수 있을 것으로 기대된다.

  • PDF

개인화된 추천 시스템의 선호도 계산을 위한 정보 필터링 (Information Filtering for Preference Prediction of Personalized Recommender System)

  • 곽미라;조동섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.472-474
    • /
    • 2001
  • 웹 기반의 쇼핑몰 사이트의 수가 많아지고 그 이용량이 증가하면서, 차별화된 고객 서비스를 위해 다양한 데이터마이닝 기술들이 적용되고 있다. 특히 고객의 취향에 부합하며 그의 필요를 만족하는 상품을 고객에게 제안하는 추천 시스템을 위해 정보 필터링(information filtering) 알고리즘들이 사용되고 있다. 많은 추천 시스템들은 고객들이 상품에 대해 부여한 선호도 정보를 기반으로, 현재 사용중인 고객에게 그와 취향이 비슷한 고객들이 선택했으며, 아직 그가 선택한 적이 없는 상품을 추천하는 협력적 필터링(collaborative filtering) 방법을 사용하고 있다. 본 연구에서는 보통의 협력적 필터링 방법에 내용기반 필터링(content-based filtering) 방법을 적용하고, 고객의 상품에 대한 선호도 점수를 자동으로 계산할 수 있도록 하는 방법을 제안하여 적용함으로써 협력적 필터링 방법을 개선하였다.

  • PDF

번들상품추천시스템 개발을 위한 객체지향 사례베이스 설계와 유사도 측정에 관한 연구 (An Object-Oriented Case-Base Design and Similarity Measures for Bundle Products Recommendation Systems)

  • 정대율
    • 지능정보연구
    • /
    • 제9권1호
    • /
    • pp.23-51
    • /
    • 2003
  • 인터넷 쇼핑몰에서 사례기반추론기법을 통한 유사상품의 탐색과 사용자 요구에 적합한 상품추천을 위해서는 다양한 요구에 부응할 수 있는 사례베이스의 구축이 우선되어야 한다. 그리고 구축된 사례베이스로부터 유사한 사례를 검색하여 재 사용하거나 필요시 수정하고, 그 결과를 다시 저장하는 기능이 요구된다. 사례기반 상품추천시스템 개발에 있어 가장 중요한 요소는 사례의 표현문제이다. 본 연구에서는 인터넷 수산물 쇼핑몰의 상품추천시스템에서 번들상품 구성문제(집안 이벤트 시 필요한 수산물의 집합)를 표현하는데 적합한 사례표현기법을 개발하며, 유사사례를 추출하기 위한 유사도 척도의 개발에 연구의 첫 번째 주안점을 둔다. 본 논문에서는 번들상품추천을 위한 사례표현기법으로 객체모델링(OMT)기법을 사용하고 있다. 또한 다양한 사례 속성 유사도 측정방법을 적용하며, 유사도 측정에서 분류법(taxonomy)의 의미와 그 적용방법을 제시한다.

  • PDF

추천 시스템을 위한 2-way 협동적 필터링 방법을 이용한 예측 알고리즘 (A Predictive Algorithm using 2-way Collaborative Filtering for Recommender Systems)

  • 박지선;김택헌;류영석;양성봉
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권9호
    • /
    • pp.669-675
    • /
    • 2002
  • 최근 전자상거래에서 대부분의 개인화 된 추천 시스템들은 고객의 취향에 맞는 적절한 상품을 추천하기 위하여 협동적 필터링 기술을 적용하고 있다. 사용자 기반 협동적 필터링은 특정 고객의 선호도와 가장 유사한 선호도를 가지는 고객 그룹의 선호도를 바탕으로 그 고객의 특정 상품에 대한 선호도를 예측하는 기법이다. 그러나 이 방법은 두 고객이 모두 평가를 한 상품이 있어야 하고 오직 두 고객 사이에서만 상관 관계를 구할 수 있으므로 예측의 정확성이 떨어질 가능성이 있다. 아이템 기반 협동적 필터링은 고객이 선호도를 입력한 기존의 상품들과 예측하고자 하는 상품의 상관 관계를 계산하여 선호도를 예측한다. 이 방법에서는 상품들간의 유사도를 계산하기 위하여 두 상품에 대해 선호도를 입력한 고객들의 정보를 사용한다. 그러나 고객들간의 유사도가 전혀 고려되지 않기 때문에 만약 특정 고객과 전혀 선호도가 비슷하지 않은 사용자들의 평가를 기반으로 한다면, 상품들간의 유사도가 정확 하지 않고 아울러 추천 시스템의 예측 능력과 추천 능력이 저하되는 문제점이 있다. 본 논문에서는 기존의 아이템 기반 협동적 필터링 기술의 문제점을 보완하고 추천 시스템의 예측 능력을 향상시키기 위하여 유사한 선호도를 가지는 고객들의 평가에 근거하여 상품들간의 유사도를 구하여 특정 상품에 대한 고객의 선호도를 예측하여 추천해 주는 기법을 제안한다. 본 논문에서 제안한 방법의 성능을 기존의 여러 다른 협동적 필터링 방법들과의 비교실험을 통해 평가하였다. 실험 결과 본 논문에서 제안한 방법이 기존의 다른 방법들보다 우수함을 확인할 수 있었다.

대용량 개인화 실시간 상품 추천 시스템 설계 (Design of a Large Real-Time Personalized Recommendation System)

  • 김종희;심장섭;이동하;정순기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 춘계학술발표대회
    • /
    • pp.109-112
    • /
    • 2006
  • 최근 대용량 추천시스템에 대한 필요성이 증가하고 있고, 특히 대규모 인터넷 쇼핑몰을 위한 개인화 추천 시스템 구조에 대한 관심이 높아지고 있다. 본 논문에서는 k-means 클러스터링과 순차 패턴 기법을 이용한 인터넷 쇼핑몰 상품 추천 시스템을 설계 및 구현한다. 사용자 정보의 일괄처리와 카테고리의 계층적 특성을 반영하면서 데이터 마이닝 기법을 활용하여 개인화된 추천 엔진을 대형 시스템에서 동작하도록 설계 하였다. 설계 구현한 시스템의 평가를 위해, 대형 쇼핑몰의 데이터를 이용하여 추천 예측 정확율(PRP: Predictive Recommend Precision), 추천 예측 재현율(PRR: Predictive Recommend Recall), 정확도 인수(PF1 : Predictive Factor One-measure)를 구하였다.

  • PDF

주변 환경정보를 이용한 상품추천시스템 설계 (Design of Merchandise Recommendation System Using Environmental Information)

  • 김성진;이주은;김채연;이은솔;장재석;이준동;최재홍
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.129-131
    • /
    • 2019
  • 본 논문에서는 다양한 아두이노 무선센서 모듈과 Raspberry Pi, 웹서버를 이용한 IOT 기반 환경정보 수집 시스템을 구현하고, 상품추천시스템을 제안한다. 이 시스템은 사용자가 주변 환경의 데이터를 정확하게 확인하고 활용할 수 있도록 한다. 상품추천 시스템에서는 상점 외부에 부착된 다양한 무선센서 모듈들을 이용해 상점 주변의 환경데이터를 수집하고, 무선통신을 통해 Raspberry Pi로 데이터를 전송한다. 전송된 데이터는 Server로 보내져 Server DB에 저장되고 Server에서 센서값들의 평균값을 계산해 Raspberry Pi로 다시 보내주면 Raspberry Pi에 연결된 모니터를 통해 실시간으로 주변의 데이터와 주변 상황에 맞는 경고 메시지를 보여주고, 이후 필요한 물건을 추천해준다.

  • PDF

전자상거래에서 연관규칙을 이용한 추천 시스템의 설계 및 구현 (Design of recommendation system using association rule in e-Commerce)

  • 오재영;전종훈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.121-123
    • /
    • 2004
  • 본 논문은 데이터 마이닝에서 사용되는 연관규칙(Association Rule)을 활용하여 고객에게 상품을 추천하는 방법을 제안한다. 일반적으로 한명의 고객에 대하여 적용할 수 있는 연관규칙의 개수가 한 개 이상이 될 수 있다는 가정하에, 고객과 연관규칙과의 적합성 여부를 값으로 나타내는 방안을 고안하고 이를 이용하여 고객에 대한 연관규칙의 순위를 부여하는 방식을 연구한다. 또한 상품 추천 시 범위 값을 가지는 속성을 고려하여 상품을 추천하도록 하는 방법을 제안하고 이 방법의 타당성과 타 방식과의 비교우위를 실험을 통하여 검증한다.

  • PDF

빅 데이터를 활용한 애완동물 상품 추천 시스템 구현 (Implementation of a pet product recommendation system using big data)

  • 김삼택
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.19-24
    • /
    • 2020
  • 최근, 애완동물의 급격한 증가로 애완동물의 건강상태 체크와 다양하게 수집된 데이터를 활용하여 사료 추천 등 통합적인 애완동물관련 개인화 상품 추천 서비스가 요구된다. 본 논문은 빅 데이터 기술을 활용하여 애완동물관련 데이터 수집, 전처리, 분석, 관리등 다양한 개인화서비스를 할 수 있는 상품 추천시스템을 구현한다. 먼저, 애완동물이 착용하고 있는 센서 정보와 고객의 구매 패턴, SNS 정보를 수집해 데이터베이스에 저장하고 통계적 분석을 활용하여 사료제작, 애완동물 건강관리 등 맞춤형 개인화 추천 서비스가 가능한 플랫폼을 구현한다. 본 플랫폼은 유사도가 분석될 상품과 상품정보에 대한 유사도 상품 정보를 출력하고 최종적으로 추천 분석한 결과를 출력하여 고객에게 정보를 제공 할 수 있다.