• Title/Summary/Keyword: 상승압력

Search Result 621, Processing Time 0.023 seconds

Phase Behavior of Sorbitan Monopalmitate Surfactant in Supercritical Carbon Dioxide (초임계 이산화탄소에서 소르비탄 모노팔미테이트 계면활성제의 상거동에 관한 연구)

  • Oh, Kyung Hwan;Kim, Eun Jin;Shin, Hun Yong
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.8-12
    • /
    • 2013
  • Phase behavior of carbon dioxide + surfactant binary system and carbon dioxide + surfactant + water ternary system was investigated at the temperatures from 318 K to 348 K by using high pressure vapor liquid equilibrium apparatus containing variable-volume view cell. Sorbitan monopalmitate was used as the surfactant. The cloud point pressures for the binary mixture of carbon dioxide + sorbitan monopalmitate increased with an increasing of system temperatures and the maximum cloud point pressure was observed at the composition of 0.226 wt% of sorbitan monopalmitate. On the other hand, as the temperatures and compositions of water increased, the cloud point pressures for ternary system containing 0.1 wt% of sorbitan monopalmitate increased significantly. For the ternary system of constant 0.2 wt% of water, the cloud point pressure curves show relatively flat according to the change of compositions of surfactant. The cloud point pressures increased when the temperatures and compositions of water increased.

Experimental Study on the Energy Separation of the Vortex Tube for EGR Cooler (EGR Cooler 대체용 Vortex Tube의 에너지 분리 현상에 관한 실험적 연구)

  • Kim, Chang-Su;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Vortex tube is the device that can separate small particles from the compressed gas, as well as compressed gas into hot and cold flow. Due to energy separation ability, a vortex tube can substitute for an EGR cooler of the automotive engine. In this study, experimental approach has been performed to analyze the energy separation characteristics of the vortex tube. Energy separation characteristics of the vortex tube has been tested for supply pressure, cold-out pressure, and hot-out pressure. As increasing supply pressure, energy separation effect increased. Maximum temperature exists about 0.85 of the cold-out-flow-ratio, and minimum exists about 0.35. Hot-out temperature of the vortex tube is affected by the hot-out and cold-out pressure. However, for the given conditions, cold-out temperature is independent of exit pressure change. The results from this study can be used for the basic design parameter of the EGR cooler substitute of an automotive engine.

Study on the Prediction of Dimension Variation due to the Temperature Rises of the Composite Material and Box Beam Type Mold Steel (복합재료를 이용한 박스빔 형태 금형의 온도상승에 따른 치수 변화 예측에 관한 연구)

  • Kim, Ho-Sang;Lee, Chan-Hee;Lee, Won-Gi
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.12-16
    • /
    • 2018
  • Composite material and mold steel can be expanded differently with the temperature gradients during the forming process because their coefficients of thermal expansions are not the same. Therefore, in order to manufacture the product with accuracy, it is necessary to verify that the forming pressure on the surface of the composite material is maintained to the required level from the material supplier. In this paper, the pressure between the composite material and mold due to the temperature difference was predicted by finite element analysis and the accuracy of predicted value was verified by measuring the thermal expansions of mold steel by the ruler. The predicted value by finite element analysis is closely in agreement with one by the experiment within the required tolerance value of ${\pm}0.05mm$.

Nonstoichiometry of $ZrO_2$ and $Sm_2O_3$ ($ZrO_2$$Sm_2O_3$의 비화학양론)

  • Soon Ho Chang;Chul Hyun Yo;Jae Shi Choi;Mu Sil Pyon
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 1986
  • The x-values of nonstoichiometry chemical formulas, Sm$O_{1.5+x}$ and Zr$O_{2+x}$, have been measured in temperature range from 500$^{\circ}$C to 1000$^{\circ}$C under oxygen pressure of 2 ${\times}10^{-1}$ to 1 ${\times}10^{-5}$ atm by gravimetric method. The enthalpies of formation of defect in samarium sesquioxide and zirconium dioxide decrease with decreasing oxygen pressure and are all positive. The 1/n values calculated from the slopes of the plots of log x vs. log $PO_2$ increase with temperature and are positive values which mean the higher oxygen pressure dependence at higher temperature. From x-values and thermodynamic data, it is found out that the nonstoichiometric defect is fully ionized metal vacancy. The conduction mechanisms of the systems are also discussed with respect to the nonstoichiometric compositions.

  • PDF

Development and Performance Analysis of Gas Generator with Plunger-type Flow Control Valve for Ducted Rocket : Part II (Plunger 타입 유량조절장치를 적용한 덕티드 로켓용 가스발생기 개발 및 성능분석 : Part II)

  • Han, Seongjoo;Lee, Jungpyo;Cho, Sungbong;Khil, Taeock;Kim, Minkyum
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.87-92
    • /
    • 2021
  • In this study, a numerical approach was utilized to observe the phenomena in the ground combustion test of a gas generator for a ducted rocket with a plunger-type flow control device. The design factors were also identified through the analysis. It was observed that the pressure increase without the adhesion of the combustion product at the discharge pipe was quite similar to the analysis assuming a cone-shaped erosive burning effect. The pressure increase in most cases was similar to the analysis results when assuming the change in discharge pipe area due to the adhesion of combustion products. Moreover, it was also established that for a given grain shape and discharge flow area, the effect of the adhesion of combustion products has a significant effect on the combustion chamber pressure for cases over n=0.45.

Development of a Load Measurement System for Vehicles using Tire Pressure System Technology (타이어 공기압 시스템 기술을 사용한 차량의 적재중량 측정 시스템 개발)

  • Park, Jae-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • In this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires. The proposed technique consists of four processes: noise correction by load and vibration, gas flow correction, data mixer and weight conversion. Noise correction by load and vibration eliminates noise that increases the tire's internal pressure due to external shocks and vibrations produced by the vehicle while it is in motion. In the gas flow correction process, the noise of the internal pressure of the tire is increased due to the temperature rise of the ground with respect to the data obtained through the noise correction process due to the load and vibration. In the data mixer process, the load and pressure on the tolerances the empty, median and the full load are classified according to the change in pressure of the tire that is delivered perpendicular to the tire in the event of cargo. In the weight conversion process, weight is expressed by weight through weight conversion algorithms using noise correction results by load and vibration and gas flow correction. The weight conversion algorithm calculates the weight conversion factor, which is the slope of the linear function with respect to the load and pressure change, and converts the weight. In order to evaluate the accuracy of the loading weight measurement system of the vehicle using the tire pneumatic system technique proposed in this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires.. Noise correction results by load and vibration and gas flow data correction results showed reliable results. In addition, repeated weight precision test showed better weight accuracy than the standard value of 90% of domestic companies.

A Correlation between the Pressure Oscillation of Combustion Chamber and Thrust Response in a 70 N-class Hydrazine Thruster (70 N급 하이드라진 추력기의 연소실 압력진동 강도와 추력 응답특성의 상관관계)

  • Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.1-8
    • /
    • 2015
  • A ground hot-firing test(HFT) was accomplished to draw a correlation between the pressure oscillation intensity of combustion chamber and thrust response characteristics in a 70 N-class hydrazine thruster which has been developed recently. Monopropellant grade hydrazine was adopted as a propellant for the HFT, and combustion-chamber characteristic length, propellant injection pressure were applied as test parameters. It was confirmed that the decrease of thrust-chamber diameter and injection pressure augmented the pressure oscillation of stagnation chamber in the test condition specified, and the oscillation hampered the pulse response performance of test models.

Output Ccharacteristics of XeCl Excimer Laser Excited by Transeverse-Electron-Beam (횡방향 전자빔여기 XeCl 엑시머 레이저의 출력특성)

  • 류한용;이주희;김용평
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.386-393
    • /
    • 1994
  • We have investigated output characteristics of XeCI excimer laser excited by transeverse electronbeam. We used e-beam output of 880 kV, 21 kA (70 ns, FWHM) and controlled current density of e-beam by pulsed magnetic coil (4.7 kG) which was fabricated around an e-beam diode (A-K gap is 21 mm) and laser chamber. We have obtained 35 J (4 atm) of e-beam deposition energy injected into laser media. The deposition energy was converted from an exposure area of Radcolor film and rising pressure of gas media which is measured by pressure jump method. The excited volume of $320cm^{3}$ was calculated. The maximum efficiency of 1.7% was obtained with the mixing ratio of HCllXe/Ar==0.2/ 6.3/93.5% and total pressure of 3 atm. Also laser output energy and specific energy were obtained 0.52 J and 1.7 J/I, respectively. For the analysis of experimental results we have developed computer simulation code. From the good agreements with the results of experiment and simulation we could theoretically explain the XeCI* formation channel. relaxation channel, and absorption channel of 308 nm.308 nm.

  • PDF