DAEHAN HWAHAK HWOEJEE (Journal of the Korean Chemical Society) Vol. 30, No. 1, 1986 Printed in the Republic of Korea

ZrO2와 Sm2O3의 비화학양론

張舜浩·呂鐵鉉·崔在時·片戊實* 연세대학교 이과대학 화학과 *명지대학교 공과대학 화학공학과 (1984. 7. 16 접수)

Nonstoichiometry of ZrO₂ and Sm₂O₃

Soon Ho Chang, Chul Hyun Yo, Jae Shi Choi and Mu Sil Pyon* Department of Chemistry, Yonsei University, Seoul 120, Korea *Department of Chemical Engineering, Myongji University Seoul 122, Korea (Received July 16, 1985)

요 약. SmO_{1.5+x} 와 ZrO_{2+x} 로 표시되는 사마늄 산화물과 지르코륨산화물의 비화학양론적 조성식 의 x-값을 500°C에서 1000°C까지의 온도 영역과 2×10⁻¹~1×10⁻⁵기압 산소압력까지의 영역에서 중량 분석법에 의하여 측정하였다. x-값은 온도가 상승하면 증가하고 산소압력이 높아짐에 따라 또 한 증가하였다. 비화학양론적 조성의 생성엔탈피 4H_f는 산소압력이 낮아지면 감소하였고 그 값은 양의 값을 갖는다. 산소압력 의존성 1/n 값은 온도가 상승하면 커지고 양의 값을 갖는 것으로 고온 일수록 산소압력 의존성이 커짐을 나타낸다. x-값과 열역학적 자료들로 부터 비화학양론적 결함은 이온화된 금속공위이다. 이들 계의 전도성 메카니즘을 비화학양론적 조성과 관련시켜 고찰하였다.

ABSTRACT. The *x*-values of nonstoichiometry chemical formulas, $\text{SmO}_{1.6+x}$ and ZrO_{2+x} , have been measured in temperature range from 500°C to 1000°C under oxygen pressure of 2×10^{-1} to 1×10^{-5} atm by gravimetric method. The enthalpies of formation of defect in samarium sesquioxide and zirconium dioxide decrease with decreasing oxygen pressure and are all positive. The 1/nvalues calculated from the slopes of the plots of log *x* vs. log Po₂ increase with temperature and are positive values which mean the higher oxygen pressure dependence at higher temperature. From *x*-values and thermodynamic data, it is found out that the nonstoichiometric defect is fully ionized metal vacancy. The conduction mechanisms of the systems are also discussed with respet to the nonstoichiometric compositions.

1.서 론

사마륨 이삼산화물(Sm₂O₃)은 희토류 산화물 (rare earth oxide)중에서 비화학양론적 조성이 비교적 형성되기 어려운 물질로 알려져 있다. 일반적으로 Sm₂O₃는 다른 전이금속 산화물과는 달리 결정(crystal) 내에서 산소 이온은 극히 이 동하기가 용이하나, 금속이온은 이동하기 어려 운 것으로 보고되고 있다. Kunt¹와 Berard^{2,3}는 각기 란탄족 산화물들의 확산실험을 통하여 산 소의 확산계수는 금속이온의 확산계수보다도 크 며 활성화에너지는 비교적 작은 값을 갖는다고 보고한 바 있다. Rao⁴는 L_nO₂의 식을 갖는 란 탄족산화물에서 *x* 값이 1.75에서 2.0 사이의 값 을 가질때는 n-형 반도성을 나타내며 1.5에서 1.75 사이의 값을 가질때는 *p*-형 반도성을 나타 내는 혼합원자가 반도체(mixed valence semiconductor)라고 보고하였다. 그리고 이들 산화물 에서의 주된 결함구조는 완전히 이온화된 금속 공위(fully ionized metal vacancy)라고 보고 하

였다. 그러나 Dherhomez⁵는 틈새형산소(oxygen interstitial)라고 보고하였다. Sm2O3의 융점은 Argon 기체하에서 광학온도계(optical pyrometer)로 측정한 결과 2535°C 6 로서 대단히 높기때 문에 내화재 및 공학분야에 유용한 물질이다. 상대적인 열역학적 안정도에 따라서 C, B, A, H, 및 X형의 결정구조를 갖는다.'즉 C형의 구조 는 형석형 구조와 비슷하게 6개의 옵어온이 배 위(coordinate)되어 있는 입방정계(cubic system) 이고, B형은 단사정계(monoclinic system), A 형은 육방경계(distorted hefxagonal system)이며 H형은 A형과 비슷한 육방정계 구조이다. 그러 나 X 형은 구조가 아직 규명되지 않은 상태이다. 이들의 전이점은 각각 850~900°C, 1850°C, 2250°C, 2330°C⁸ 등으로 알려져 있다. Boulesteix⁹ 등은 금속 Sm을 산화시키면 C 형의 산화물이 형성되고 900°C 이상에서는 약간 일그러진 B형 으로 전이되지만 A 형의 구조로도 전이됨을 보 고하였다. Sm2O3의 물리적 성질을 연구하는 데 는 다형전이의 관계를 반드시 이해해야 되는데 이에 관한 연구는 Goldschmidt¹⁰ 등에 의해 이루 어졌으며 이들 구조간의 전이 온도는 시료의 제 조과정, 순도, 열쳐리온도 및 산소압력 등에 의 해 약간씩 차이가 난다. Sm2Oa의 전이는 원자 들이 어떤 특별한 전자구조의 조건을 만족할때 이루어진다. 그리고 온도의 증가에 따라 일정한 전자구조를 갖는 원자들의 중가가 비편재화(delocalized)된 전자의 농도를 감소시키게 되고 전 이는 결정구조의 대칭성이 증가하는 방향으로 일어난다. Sm2O3의 전기전도 메카니즘에 관한 이론들로서는 순수한 전자성 반도체(electronic semiconductor)라는 이론과 완전히 이온성 반도 체(ionic semiconductor)라는 이론, 그리고 일부 이온성을 함유한 전자성 반도체라는 상반된 이 톤이 제기되어 있다. 결국 Sm2O3의 전기전도성 메카니즘이 아직 정립되어 있지 않은 상태이다. Noddack^u은 1기압, 873~1573K의 온도영역에 서 이단자법(two probe method)을 이용하여 순 도 99~99.85%, Sm2O3의 전기전도도를 측정한 결과로 부터 전기전도는 주로 전자성에 기인하 여 0.01% 이하의 이온성을 동시에 갖고 있다고 보고하였다. 그러나 Sm2O3의 정확한 전도 메카 니즘(conduction mechanism)과 반도체형(typeness)을 밝히지 못하였다. Dherhomez¹²는 1000 ~1200°C에서 다결정 Sm2O3의 전기전도도를 측정한 결과 전기전도도가 19~9~10~6 기압의 산 소압력에서 관찰되었다는 실험결과로 부터 두가 지 유형의 전도메카니즘이 존재함을 보고하였다. Tare¹³는 670~850°C 산소압력 10⁻⁶~10⁻²⁰ 기압 하에서 99.9%의 Sm2O3의 전도도를 측정한 결 과 Sm2O3는 완전한 이온성 반도체라고 보고하 였다. 그러나 Neumin¹⁴, Samsonov¹⁵는 이단자 법을 이용하여 400~1200°C의 온도영역에서 산 소압력을 변화시켜 전기전도도를 측정한 결과 전기전도도는 전자성을 나타낸다고 보고하였다. Eyring¹⁶ 동은 700~1000°C 구간에서 순도 99.9% 와 99.998% Sm2O3의 두 종류의 시료는 30~ 300torr 의 산소압력에서 외성 (extrinsic behavior) 을 나타낸다고 보고하였다.

이산화지르코늄(ZrO2, zirconia)은 금속 지르 코늄의 열역학적으로 안정한 유일한 산화물로서, 단사정계(monoclinic), 정방정계(tetragonal) 그 리고 입방정계(cubic)의 세가지 유형의 구조를 갖는다. 단사정계 구조는 1000°C 까지 안정한 상 태로 존재하며, 이온도에서 정방정계로 전이된 다.¹⁷ 2200°C 이상의 온도영역에서는 입방형 CaF2 구조18로 존재함이 보고되었고 이러한 구조 는 지르코늄 이온들이 f.c.c. 부격자점을 차지하 고 산소이온은 정사면체의 모서리에 분포된 구 조이다. Vest 와 Tallan¹⁹ 등은 단사정계 구조를 갖는 지르코니아에 대하여 전기전도도와 비화학 양론의 실험을 통하여 1000°C, 10⁻¹⁶ atm 산소압 력하에서 P형에서 n형으로 전이되는 양쪽성산 화물로서 산소과잉 영역에서 우세한 결함은 완 전히 이온화된 지르코늄 공위이며 지르코늄 공 위로 부터 생성되는 전자구멍은 매우 작은 이동 도를 갖는다고 하였다. Douglass 와 Wagner²⁰는 단사정계 구조의 지르코니아에 대해 산소공위와 틈새형산소를 갖는 Frenkel 형의 결함 모델을 제 안하였으며, Kröger²¹는 산소공위와 연관된 지 르코늄공위를 포함하는 Schottky 형 모델을 제안 하였다. 그러나 Kumar와 Rajdev∞ 등은 온도와

산소압력에 따른 전기전도도와 수율(transport number)을 측정하여 10⁻¹⁹ atm 이하의 압력에서 의 결함구조는 2가로 이온화된 산소공위이고, 10⁻¹⁹ atm 이상의 압력에서는 1가로 이온화된 틈 새형 산소라 하였으며, 10⁻²²~1 atm 의 산소압 력하에서 700°C 이하의 온도영역에서는 이온성 전도체이고, 700~1000°C에서는 전자성 전도체 라고 보고하였다. 정방정계 구조의 지르코니아 에 대하여 McClaine과 Coppel²³ 등은 ac, dc technic을 사용하여 전기저항을 측정하고 이로 부터 1100~1500°C, 1~10⁻¹⁴ atm 의 산소분압하 에서 이온성 전도도와 전자성전도도의 기여를 각각 조사한 결과 1400°C 이상의 온도영역과 10⁻⁸ atm 이하의 산소압력하에서는 전자성 전도 체이고, 10⁻⁸ atm 이상의 산소압력에서는 이온성 전도도를 갖는 흔합성 전도채(mixed conductor) 라고 보고하였다.

이와같이 서로 다른 물성을 가지는 단사정계 와 정방정계 구조사이의 전이는 상당한 부피번 화를 수반한다고 알려져 있다.²⁴

본 연구는 SmO_{1.5+x}와 ZrO_{2+x}로 표시되는 비 화학양론적 조성식의 x값을 석영마이크로천칭 (quartz microbalance)을 사용하여 여러가지 산 소압력과 온도영역에서 시료의 중량분석으로 얻 은 무계변화로 부터 계산하여 얻었다. 한편 유 사한 조건에서 측정된 전기전도도 및 열역학적 자료와 비교 검토함으로써 전기전도 메카니즘을 규명하는데 있어서 비화학양론적 조성이 주요인 이 됩을 보이는데 목적이 있다.

2.실 험

본 연구에 사용한 시료는 ZrO₂(NBS 99.99%) 와 Sm₂O₃(Hurtz Co. 99.999%) 분 말을 600°C 에서 6시간동안 진공 열처리하여 흡수된 H₂O, CO₂ 등을 제거하고 마노막자사발(agate mortor) 에 넣어 분쇄한 미세분말을 2 ton/cm²으로 진공 압축시켜 펠렐(pellet)을 만들었다. 이것을 전기 로에 넣고 1050°C 에서 48시간동안 가열하여 소 결(sintering)시킨 후 상온으로 서냉시켜 평량하 였다.

이상의 두 시료를 x-선 분석한 결과 ZrO₂는 Vol. 30, No. 1, 1986 단사정계(monoclinic) 구조이고 Sm₂O₃는 정방 정계(cubic system)임을 확인하였다.

비화학량 측정장치는 온도조절을 위한 전기로 장치(furnace assembly), 산소압력을 조절하는 진공장치(vacuum system)와 시료용기, 석영 마 이크로 천칭으로 되어있다. 단, 마이크로 천칭 의 눈금매기기, 부력과 열분자 흐름에 대한 보 정등은 이미 본 연구실에서 발표한 논문²⁵에 상 술한 바 있다. 이에 마이크로천칭의 눈금매기기 는 시료의 무게가 달라질 때마다 실시하였으므 로 본 논문에 보정곡선(calibration curve)을 표 시하지 않았다.

실험장치를 완전히 맞춘 다음 시료를 시료함 에 담고 대기압하에서 100°C 에서 1000°C 까지 100°C 간격으로 온도를 상송사키면서 부척이 달 린 유동현미경을 사용하여 저울의 높이 변화를 읽는다. 이 높이 변화를 저울의 눈금매기기 꼭 선에 의하여 시료의 무게 증감으로 환산한다. 한편 2×10⁻¹~10⁻⁵ atm 산소압력 범위에서 각 산소압력을 고정시키고 시료의 무게증감을 대기 압하에서와 같은 방법으로 측정하여 각 산소압 릭하에서 무게변화의 온도의존성을 측정한다. 한편 온도를 500~1000°C 범위에서 100°C 간격 으로 고정시킨 후 각각의 온도에서 산소압력을 변화시켜 시료의 무게변화의 산소압력의존성을 측정한다.

본 연구에서는 비화학양론적 조성식을 SmO 1.5+x 와 ZrO_{2+x} 로 표시하여 산소과잉(oxygen excess) 또는 금속결핍(metal deficit)을 나타내 었다. 여기서 x는 화학양론적 조성으로 부터의 편차 즉, 비화학양론적 조성을 나타내며 다음 식 을 사용하여 시료의 무게변화로 부터 계산할 수 있다.

Sm ₂ O ₃ 인 경우	$x = \frac{\Delta W}{Ws} \cdot \frac{M}{32}$
ZrO₂인 경우	$x = \frac{\Delta W}{W_s} \cdot \frac{M}{16}$

여기서 M은 금속산화물들의 분자량, Ws는 화학양론적 조성일때의 금속산화물의 무계, ΔW 는 산소의 흡착과 탈착에 기인되는 산화물들의 무개변화를 나타낸다.

3. 실험결과 및 고찰

SmO1.5+# 로 표시되는 비화학양론식의 #값은 Sm2O3+x'로 표시되는 식의 x'값의 절반에 해당 한다. 즉 $x = \frac{x'}{2}$ 의 관계가 성립하지만 실제로 x로 표시하거나 *x'* 로 표시할 경우 그들의 온도의 존성에는 아무런 차이가 없다. 대기압 1000°C 에서 이산화물의 화학식은 SmO1.50024 또는 Sm2O3.00048 로 비화학양론적 조성식을 쓸 수 있 다. 본 연구 범위에서 x값은 1.0×10⁻⁵~2.4× 10~ 범위에서 변하였고 산소압력이 크면 클수록 또한 온도가 상승할수록 x값이 증가함을 알 수 있다. SmO_{1.5+x}계에서 log x vs. 1000/T의 도표 는 Fig.1에서 보는 바와같이 Arrhenius plot은 좋은 직선관계를 보인다. 고정된 산소압력하에 서 온도를 상승시키면 x값이 증가하는 경향을 보여주고 있으며 변화율은 높은 산소압력일수록 약간 커짐을 알 수 있으며 낮은 산소 압력에서 는 거의 변화가 없었다.

이것은 Sm2O3가 비화학양론적 조성을 거의 갖지 않는다고 할 수 있다. 또한 이들의 기울기 로 부터 Table 1에서 보는바와 같이 비화학양 론적 조성의 생성엔탈피 또는 과잉산소의 생성 엔탈피(4H₁)를 계산할 수 있다. 본 실험영역에 서 AH_f는 2.01~0.73kcal/mele이며 AH_f값은 모두 양의 값을 갖는다. 이것은 Sm2O3의 과잉 산소를 생성하는 과정이 흡열과정(endothermic process)임을 알 수 있으며 그 값들이 작은 것으 로 보아 과잉산소의 생성과정이 온도변화에 따 라 매우 어렵다는 것을 알 수 있다. 또한 산소 압력이 커짐에 따라 4H,값이 커진다는 것은 산 소압력이 커질수록 온도의존성이 커짐을 나타낸 다. 주어진 일정한 온도에서 log x vs. log Po2를 도시한 Fig.3을 보면 #값은 산소압력이 증가하 면 따라서 중가한다. 이들의 기울기로 부터 구 한 1/n 값은 Table 3에서 보는 바와같이 1/40~ 1/16.6 구간에서 변하였다. 1/n 값이 매우 작은 것은 산소 압력의존성이 매우 작다는 것을 나타 낸다.

ZrO_{2+x} 로 표시되는 단사정계 지르코늄 산화물 비화학양론적 조성식의 *x* 값은 0.01514~0.00128

Fig. 1. Log x vs. 1000/T for Sm₂O₃ under various O₂ pressures.

Fig. 2. Log x vs. 1000/T for ZrO₂ under various O₂ pressures.

구간에서 변하였으며 여기서 x값이 0.00128이 라면 비화학양론적 조성식은 ZrO_{2.00128} 로 표시할 수 있다. Fig.2에서 보여주는 log x vs. 1000/T 의 도식은 좋은 직선관계를 보여주며 온도가 상 승하면 x값이 증가함을 보여주고 있다. 본 실

Journal of the Korean Chemical Society

Fig. 3. Log x vs. log Po_2 for Sm_2O_3 at various temperatures.

Table 1. Enthalpies of formation of excess oxygen in Sm_2O_3 (ΔH_d) under various oxygen pressures

O ₂ pressure (atm)	Enthalpy of formation (kcal/mole)
2×10 ⁻¹	2.01
1×10 ⁻²	1.65
1×10-3	1.37
1×10-4	1.01
1×10 ⁻⁵	0.73

Table 2. Enthalpies of formation of excess xygen in ZrO_2 (ΔH_f) under various oxygen pressures

O ₂ pressure (atm)	Enthalpy of formation (kcal/mole)
2×10-1	6.4
1×10 ⁻²	5.7
1×10 ⁻³	4.9
1×10-4	3.2
1×10 ⁻⁵	2.7

험에서 화학양론적 조성을 가질때의 *x*=0 값은 log *x* vs. 1000/T의 외삽법(extrapolate)에 의하 여 구하였으며 이로부터 시료무게의 증가를 *x* 값 으로 확산하였다. 이들의 기울기로 부터 구한 비화학양론적 조성의 생성엔탈피(*d*H_f)는 6.4~ 2.7 kcal/mole 구간의 값을 *Table* 2에서 보여주 고 있으며 산소압력이 커질수록 생성엔탈피가 커짐을 볼 수 있다. 따라서 ZrO₂의 결함 생성 과정이 흡열반응임을 알 수 있다. log *x* vs. log Po₂를 도시한 *Fig.*4 또한 직선관계를 보여주며 이로부터 구한 1/n 값은 Table 4에서 보듯이 1/5~1/9.5로 변하였다. 이 값은 온도가 상승 함에 따라 증가하며 이는 높은 온도일수록 산소 압력의존성이 커짐을 보여준다. 여기서 700°C 이상에서는 약 1/5의 값을 가지고 있으며 그 이 하의 온도에서는 감소하였다.

이상에서와 같이 본 연구조건 범위에서는 Sm₂O₃와 ZrO₂는 P형의 반도성을 나타내고 있 다. 본 연구실에서 발표한²⁶ Sm₂O₃의 log conductivity vs. log Po₂^{1/n}의 1/n 값은 본 실험 구 간에서 1/5.3~1/5.2이었다. 이것은 Sm₂O₃의 결합구조는 3가로 이온화된 금속공위모델(fully ionized metal vacancy)로 설명되는데 본 연구에 서 x 값이 거의 변하지 않은 것은 Sm₂O₃가 거 의 외성(extrinsic behavior)을 나타내지 않음을 알 수 있다. ZrO₂의 경우는 vest¹⁹ 등이 산소압 력의 함수로서 log conductivity 의 plot으로 부 터 구한 1/n 값 1/5 과 잘 일치함을 보여주고 있 다. 이는 ZrO₂의 결함구조가 4가로 이온화된 지 르코늄공위에 의한 것이라는 것을 잘 나타낸 것 이다. Sm₂O₃는 Sm³⁺ 공위에 의한 산소 과잉의

Fig. 4. Log x vs. log Po₂ for ZrO₂ at various temperatures.

37

Vol. 30, No. 1, 1986

Table 3. 1/n values of the plots of log x vs. log Po₂ in Sm₂O₃ at various temperatures

Temperature(°C)	1/n
500	1/40
600	1/30.1
700	1/23.5
800	1/19
900	1/18.1
1000	1/16.6

Table 4. 1/n values of the plots of log x vs. log Po₂ in ZrO₂ at various temperatures

Temperature(°C)	1/n
500	1/5.1
600	1/5.1
700	1/4.9
800	1/5.8
900	1/6.6
1000	1/9.5
	ŧ

비화학양론적 조성을 갖는다. ZrO₂는 Zr⁴⁺ 공 위에 의한 산소 파잉의 비화학양론적 조성을 가 지면서 아울러 산소이온의 이온성 전도성도 일 부 포함하는 혼합전도성 메카니즘을 갖는다. 그 러나 중성상태의 산화물계에서 이들 결함을 형 성할때 전자가 트랩(trap)되며 전자가 빼앗긴 상 태의 positive hole을 형성하는 전자성 *p*-형 반 도성(electronic *p*-type semiconduction)을 나타 낸다.

사 사

본 연구는 1984 년 기초과학육성 대학연구소 특성화 계획에 따른 연구비의 지원으로 이루어 졌으므로 문교부에 대하여 깊은 감사를 드립니 다.

인 용 문 헌

 U.E. Kuntx and L. Eyring, "Kinetics of high Temperature Process", (W.D. Kingery, ed), p. 50, Wiley, New York, U.S.A., 1959.

- C. D. Wirkus, M. F. Berard, and D. R. Wilder, J. Am. Cer. Soc., 50, 113 (1967).
- M. F. Berard, D. C. Wirkus, and D. R. Wilder, J. Am. Cer. Soc., 50, 643 (1968).
- G.V. Subba Rao, S. Ramoda, P.N. Mebrotra, and C.N. amachandra Rao, J. Sol. State. Chem., 2, 377 (1970).
- H. Breuil, N. Dherbomez, and Y. Wilbert, C. R. Akad. Sic., Ser. C., 274, 1282 (1972).
- O.A. Mordovin, N.I. Tinofeeva, and L.N. Wrozdova, IXV. Akad. Nauk USSR, Neorg. Mater. 3(1), 187 (1967).
- C. Boulesteix, B. Pardo, P.F. Caro, and M. Gasgnier, Acta. Crystallogr., Sect. B, 216 (1971).
- Marc Foex, Z. Anorg. Allzem. Chem., 337, 313 (1965).
- C. Boulesteix, B. Pardo, P.F. Caro, and M. Gasgnier, Acta. Crystallogr., Sect. B, 216 (1971).
- V. M. Gold Schmidt, F. Ulrich, and T. Brth, Skrf. Utg. Norsk. Viedenskapsa Kad. Clso, Mat-Natury HL. 1, 117 (1927).
- W. Noddck and H. Walch, Z. Electrochem.,
 63, 269 (1959).
- Y. Wilbert, H. Breuil, and N. Dherbomez, C. R. Hebd. Seances Acid. Sci. Ser. C290 (6), 373 (1975).
- V. B. Tare and H. Schmalzried, Z. Physic, Chem., N. F., 43, 30 (1964).
- A. D. Neumin, V. B. Balakireva, and S. F. Palguer, Dokl. Akad. Nauk USSR, Neorg. Mater., 10, 1642 (1974).
- G. V. Samsonov, I. Y. Gilman, and A. F. Andreeva, IZV. Akad. Nauk USSR. Neorg. Mater., 10, 1645 (1974).
- G. D. Stone, G. R. Weber, and L. Eyring, Mat. Bur. Stand. Publ., 269, 179 (1969).
- P. Kafstad and D. J. Ruzicka, J. Electrochem. Soc., 110, 181 (1963).
- G. W. Wolten, J. Am. Cer. Soc., 46, 418 (1963).
- R.E. Vest, N.M. Tallan, and W.C. Tripp, J. Am. Cer. Soc., 47 (12), 635 (1964).

ZrO2와 Sm2O6의 비화학양론

- D. L. Douglass and C. Wagner, J. Electrochem. Soc., 113 (7), 671 (1966).
- 21. F.A. Kröger, J. Am. Cer. Soc., 49 (4), 215 (1966).
- A. Kumar, D. Rajdav, and D. L. Douglass, J. Am. Cer. Soc., 55 (9), 439 (1972).
- 23. L.A. McClaine and C.P. Co5pel, J. Electro-

chem. Soc., 113 (1), 80 (1966).

- 24. D.K. Smith and C.F. Cline, J. Am. Cer. Soc., 45, 249 (1962).
- 25. J.S. Choi and C.H. Yo, J. Inorg. Chem., 13, 1720 (1974).
- K. H. Kim, H. J. Won, and J. S. Choi, J. Phys. Chem. Solids., 43, 1259 (1984).