• Title/Summary/Keyword: 상수도 관망

Search Result 301, Processing Time 0.023 seconds

Calculation of the target revenue water ratio of local waterworks considering economic feasibility (경제성을 고려한 지방상수도 목표 유수율 산정)

  • Donghong Kim;Jaebum Lee;Jungkwan Song;Taeho Choi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.311-324
    • /
    • 2023
  • As an advanced study on the method of calculating the target revenue water ratio of local waterworks through the leakage component analysis method proposed by Kim et al. (2022), this study developed a model to calculate the achievable revenue water ratio within the specified project cost, the required project cost to achieve the specified target revenue water ratio, and the economically appropriate target revenue water ratio level by considering the leakage reduction cost and leakage reduction benefit for each revenue water ratio improvement strategy, and conducted an applicability evaluation of the developed model using actual field data. The procedure for calculating the target revenue water ratio of local waterworks considering economics proposed in this study consists of three stages: physical data linkage model construction, leakage component analysis, and economic analysis, and the applicability was evaluated for Zone H with branch type and the Zone M network type. As a result of the application, it was calculated that approximately 32.5 billion won would be required to achieve the target revenue water ratio of 70% in the Zone H, and approximately KRW 10.5 billion would be required to achieve the target revenue water ratio of 75% in the Zone M. If the business scale of Zones H and M was corrected to 10,000 m3/day of water usage, the required project cost for a 1% improvement in the revenue water ratio of Zone H was calculated to be 0.7642 billion won and 0.4715 billion won for Zone M.

Comparative study on cleaning effects of air scouring and unidirectional flushing considering water flow direction of water pipes (상수도관의 물 흐름 방향을 고려한 공기주입 세척 및 단방향 플러싱 공법의 세척 효과 비교 연구)

  • Seo, Jeewon;Lee, Gyusang;Kim, Kibum;Hyung, Jinseok;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.353-366
    • /
    • 2019
  • This research proposes an optimal flushing operation technique in an effort to prevent secondary water pollutions and accidents in aged pipes, and to improve the cleaning effect of unidirectional flushing. Water flow directions were analyzed using EPANET 2.0, while flushing and air scouring experiments in forward and reverse directions were performed in the field. In 42 experiments, average residual chlorine concentration and turbidity were improved after cleaning compared to before cleaning. It was found that even when the same cleaning method was used, further improvement of cleaning effect was possible by applying air injection and reverse direction cleaning techniques. By means of one-way ANOVA(Analysis of variance), it was also possible to statistically verify the need of actively utilizing air injection and reverse direction cleaning. Based on correlation between turbidity and TSS, the total amount of suspended solids removal was estimated for 874 flushing operations and 194 air scouring operations. The result showed that air scouring used more discharge water than flushing by an average of $4.9m^3$ yet with larger amounts of suspended solids removal by an average of 145.9 g. The result of analysis on turbidity values from 887 flushing operations showed low cleaning effect of unidirectional flushing for the pipes with diameters over 300 mm. In addition, the turbidity values measured during cleaning showed an increasing tendency as pipe age increased. The methodology and results of this research are expected to contribute to the efficient maintenance and improvement of water quality in water distribution networks. Follow-up research involving the measurement of water quality at regular time intervals during cleaning would allow a more accurate comparison of discharge water quality characteristics and cleaning effects between different cleaning methods. To this end, it is considered necessary to develop a standardized manual that can be used in the field and to provide relevant trainings.

A Study on the design and evaluation of connection pipes for stable water supply (용수공급 안정화를 위한 연계관로 설계 및 평가)

  • Chang, Yong-Hoon;Kim, Ju-Hwan;Jung, Kwan-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.249-256
    • /
    • 2012
  • The paper describes a design methodology that can select a proper reliability factor and apply the selected reliability factor into the real water distribution system. Reliability factors which are used for the assesment of water supply networks, can be categorized by a connectivity, a reachability, an expected shortage and an availability. Among these factors, an expected shortage is the most proper reliability factor in the aspect of economic evaluation. Therefore, the expected shortage is applied to draw a water supply reliability into Changwon water supply systems. And the economic pipe diameter can be determined as 600mm for a connection pipe in the pipe network from the estimation of the expected shortage. Also, a quantitative effect of the connection pipe can be expressed in terms of the reduction, which is estimated by the expected shortage of 30,269$m^{3}$ from 68,705$m^{3}$ at initial condition to 38,436$m^{3}$ under the connected condition with the diameter 600mm pipe.

Evaluation of Biodegradation Characteristics of Haloacetic Acids by a Biofilm in a Drinking Water Distribution System (상수관망에서 생물막에 의한 Haloacetic Acids 생물분해 특성 평가)

  • Son, Hee-Jong;Kim, Do-Hwan;Han, Young-Rip;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1635-1642
    • /
    • 2014
  • Haloacetic acids (HAAs) concentrations have been observed to decreased at drinking water distribution system extremities. This decrease is associated with microbiological degradation by pipe wall biofilm. The objective of this study was to evaluate HAAs degradation in a drinking water system in the presence of a biofilm and to identify the factors that influence this degradation. Degradation of monochloroacetic acid (MCAA), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) was observed in a simulated distribution system. The results obtained showed that different parameters came into play simultaneously in the degradation of HAAs, including retention time, water temperature, biomass, and composition of organic matter. Seasonal variations had a major effect on HAAs degradation and biomass quantity (ATP concentration) was lower by 25% in the winter compared with the summer.

Optimal Design of Water Distribution Networks using the Genetic Algorithms:(II) -Sensitivity Analysis- (Genetic Algorithm을 이용한 상수관망의 최적설계: (II) -민감도 분석을 중심으로-)

  • Shin, Hyun-Gon;Park, Heekyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.50-58
    • /
    • 1998
  • Genetic Algorithm (GA) consists of selection, reproduction, crossover and mutation processes and many parameters including population size, generation number, the probability of crossover (Pc) and the probability of mutation (Pm). Determining values of the parameters is found critical in the whole optimization process and a sensitivity analysis with them seems mandatory. This paper tries to demonstrate such importance of sensitivity analysis of GA using an example water supply tunnel network of the New York City. For optimization of the network with GA, Pc and Pm vary from 0.5 to 0.9 by an increment of 0.1 and from 0.01 to 0.05 by an increment of 0.01, respectively, while fixing both the population size and the generation number to 100. This sensitivity analysis results in an optimum design of 22.3879 million dollars at the values of 0.8 and 0.01 for Pc and Pm, respectively. In addition, the probability of recombination (Pr) is introduced to check its applicability in the GA optimization of water distribution network. When Pr is 0.05 with the same values of Pc and Pm as above, the optimum design costs 20.9077 million dollars. This is lower than the cost of 22.3879 million dollars for the case of not using Pr by 6.6%. These results indicate that conducting a sensitivity analysis with parameter values and using Pr are useful in the optimization of WDN.

  • PDF

Impact assessment for water pressure and turbidity occurrence by changes in water flow rate of large consumer at water distribution networks (상수도관망에서 대수용가의 유량변화에 따른 수압 및 탁도발생 영향평가)

  • Choi, Doo Yong;Kim, Ju-Hwan;Choi, Min-Ah;Kim, Do-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.277-286
    • /
    • 2014
  • Water discolouration and increased turbidity in the local water service distribution network occurred from hydraulic incidents such as drastic changes of flow and pressure at large consumer. Hydraulic incidents impose extra shear stresses on sediment layers in the network, leading to particle resuspension. Therefore, real time measuring instruments were installed for monitoring the variation of water flow, pressure, turbidity and particulates on a hydrant in front of the inlet point of large apartment complex. In this study, it is attempted to establish a more stable water supply plan and to reduce complaints from customers about water quality in a district metering area. To reduce red or black water, the water flow monitoring and control systems are desperately needed in the point of the larger consumers.

Methodology for optimum design of surge relief valve in water distribution system (상수관망에서 서지 릴리프밸브의 최적 설계 방법론)

  • Kim, Hyunjun;Hur, Jisung;Kim, Geonji;Baek, Dawon;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Surge pressure is created by rapid change of flow rate due to operation of hydraulic component or accident of pipeline. Proper control of surge pressure in distribution system is important because it can damage pipeline and may have the potential to degrade water quality by pipe leakage due to surge pressure. Surge relief valve(SRV) is one of the most widely used devices and it is important to determine proper parameters for SRV's installation and operation. In this research, determining optimum parameters affecting performance of the SRV were investigated. We proposed the methodology for finding combination of parameters for best performance of the SRV. Therefore, the objective function for evaluate fitness of candidate parameters and surge pressure simulation software was developed to validate proposed parameters for SRV. The developed software was integrated into genetic algorithm(GA) to find best combination of parameters.

A Study on Water Network Modeling System Based Upon GIS (지리정보시스템 기반의 상수관망 모델링 시스템 연구)

  • Kim, Joon-Hyun;Yakunina, Natalia
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.315-321
    • /
    • 2010
  • ArcView and water network models have been integrated to develop the water network modeling system based upon GIS. To develop this system, pre, main, and post processing systems are required. GIS programming technique was adopted by using the ArcView's script language Avenue. The input data of models have been prepared by using the AutoCAD Map3D through the conversion of modeling input data to GIS data for A city. The modeling has been implemented by using EPANET, WaterCAD, InfoWorks. To develop the post processing system, the modeling results of the water network models have been analyzed by using GIS. During the application process of the developed system to B city with 300,000 population, main problems were found in the constructed GIS DB of that city. Thus, pilot study area of B city has been constructed, and pre-, main, and post-processing techniques were invented based upon GIS. Finally, the problems related to waterworks GIS projects in Korea were discussed and solutions were suggested.

The Monitoring of Corrosive Water Quality in Water Distribution System by Corrosion Characteristics of Raw and Tap water (원·정수의 부식특성에 따른 상수관망에서의 부식성 수질 모니터링)

  • Bae, Seog-Moon;Kim, Do-Hwan;Son, Hee-Jong;Choi, Dong-Hoon;Kim, Ik-Sung;Kim, Kyung-A
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.907-915
    • /
    • 2015
  • The tap water is generally known to be corrosive in the pH range at 6.5 ~ 7.5. And the degree of corrosion varies depending on the types of raw water such as river surface water or lake water of the dam. Although several corrosion index represents the corrosivity of tap water, the typical corrosion indexes such as Langelier saturation index (LI) and calcium carbonate precipitation potential (CCPP) were calculated to monitoring the corrosive water quality about raw and tap water in water distribution system. To control the corrosive water quality, the correlation between corrosion index and water quality factors were examined. In this study, corrosion index (LI, CCPP) and the pH was found to be most highly correlated.

Earthquake Damage Assessment of Lifelines and Utilities (라이프라인과 공공설비의 지진피해 평가)

  • 전상수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.9-17
    • /
    • 2001
  • This paper focuses on the earthquake hazard delineation and physical loss estimation for lifelines and utilities. Emphasis is given to geographic information systems(GIS) and their application to pipeline networks in evaluating the spatial characteristics of earthquake effects. The paper examines the GIS databases for water supply performance obtained for the 1994 northridge. Relationships among buried lifeline damage and various seismic parameters are examined, and the parameters that are statistically most significant are identified. Using GIS data from the Northridge earthquake, the relationships among pipeline repair rate, type of pipe, diameter, and various seismic parameters are assessed.

  • PDF