• Title/Summary/Keyword: 상대 투수계수

Search Result 35, Processing Time 0.033 seconds

Estimation on Unsaturated Hydraulic Conductivity Function of Jumoonjin Sand for Various Relative Densities (주문진 표준사의 상대밀도에 따른 불포화 투수계수함수 산정)

  • Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2369-2379
    • /
    • 2013
  • The Soil-Water Characteristics Curve (SWCC) is affected by the initial density of soil under unsaturated condition. Also, the characteristic of hydraulic conductivity is changed by the initial density of soil. To study the effect of initial density of unsaturated soil, SWCC and the Hydraulic Conductivity Function (HCF) of Jumoonjin sand with various relative densities, 40%, 60% and 75% were measured in both drying and wetting processes. As the results of SWCC estimated by van Genuchten (1980) model, the parameter related to Air Entry Value(AEV), ${\alpha}$ in the wetting process is larger than that in drying process, but the parameters related to the SWCC slope, n and the residual water content, m are larger than those in wetting process. The AEV is increased or Water Entry Value (WEV) is decreased with increasing the relative density of sand. The AEV is larger than the WEV at the same relative density of sand. As the results of HCF estimated by van Genuchten (1980) model which is one of the parameter estimation methods, the unsaturated hydraulic conductivity maintained at a saturated one in the low level of matric suctions and then suddenly decreased just before the AEV or the WEV. The saturated hydraulic conductivity in drying process is larger than that in wetting process. The saturated hydraulic conductivity is decreased with increasing the relative density of sand in both drying and wetting processes. Also, the hysteresis in unsaturated HCFs between drying and wetting process was occurred like the hysteresis in SWCCs. According to the test results, the AEV on SWCC is decreased and the saturated hydraulic conductivity is increased with increasing the initial density. It means that SWCC and HCF are affected by the initial density in the unsaturated soil.

Elastic Modulus and Layer Coefficient of Permeable Block Pavements Based on Plate Load Tests (평판재하시험을 통한 투수 블록포장의 탄성계수 및 상대강도계수 산정)

  • Choi, Yong-Jin;Oh, Jeong-Ho;Han, Shin-In;Ahn, Jaehun;Shin, Hyun-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.75-80
    • /
    • 2017
  • Permeable block pavement systems are widely used to relieve the flood and enhance water circulation. However, domestic design method has not yet been established well. Although AASHTO 93 flexible pavement design method is applied as a structural design method outside the country, there is a lack of information on layer coefficient of the permeable pavement materials, which makes it difficult to apply the design to various materials. Therefore, in this study, a method of calculating the layer coefficient of permeable block pavement materials by plate load test was presented and the layer coefficient of a permeable block pavement in a testbed was evaluated. Overall, calculated layer coefficient of open graded aggregate and permeable block pavement surface layer were similar to those of the conventional values. The presented method may be used to evaluate layer coefficients of permeable block pavements for design.

Unsaturated Permeability Characteristics of Silty Sand on the Nak-dong River (낙동강 실트질 모래에 대한 불포화 투수특성)

  • Kim, Young-Su;Shin, Ji-Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1C
    • /
    • pp.7-16
    • /
    • 2012
  • In this paper, using the principle of Static Measurement Methods suggested by Huang (1998), a new experimental device has been made and used in order to calculate the unsaturated permeability of Nak-dong river sand with silt which is an important basic property in the unsaturated soil. This device was designed to measure changes of the unsaturated permeability according to the increase of matric suction. The value of the unsaturated permeability obtained in testing and that obtained using the empirical permeability functional formula were compared and analyzed. As a result, the value of the unsaturated permeability tends to be decreased according to the increase of relative density, silt content and matric suction. This tendency shows it is very closely related to the change of moisture content and void ratio. The empirical permeability functional formula presented by Frelund & Xing (1995) was regarded as the most appropriate model to represent the unsaturated permeability of Nak-dong River silty sand.

Numerical study for the optimum grouting design of subsea tunnels (해저터널의 그라우팅 최적 설계를 위한 수치해석적 연구)

  • Joo, Eun-Jung;Kim, Yong-Kye;Shin, Jong-Ho;Kwon, Oh-Yeob
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.349-358
    • /
    • 2010
  • In the long-term, most tunnels suffer from the increase in ground water inflow and in pore water pressure on the lining. To reduce such hydraulic effect, generally grouting methods are adopted. In this paper effective grouting design is proposed based on numerical simulation. To investigate the optimal grouting layout, factors such as relative permeability, grouting thickness, and distance from the lining are considered. The results are analysed in terms of pore water pressure, inflow rate, and earth pressure. It is revealed that the pore water pressure has increased with a decrease in grout permeability, an increase in grouting thickness and an increase in grouting distance. Meanwhile the inflow rate has decreased with a decrease in grout permeability and is inversely proportional to grouting thickness. Effective grouting design guideline are proposed based on this study.

Sonication Effect on the Relative Permeability of contaminated Soil (초음파에 의한 오염토의 상대투수계수의 변화)

  • 김영욱
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • This study investigated the effectiveness of ultrasonic waves on the relative permeability under a range of soil type, flushing rate, and sonication power. This study was conducted in the laboratory using a specially designed and fabricated equipment, and the laboratory study was simulated by ECLPISE 100 which is a commercial black oil simulator. The test results indicated the sonication increased contaminant extraction significantly. From analytical standpoint, sonication caused a change in the relative permeability of the test samples, a reduction in residual oil saturation and an increase in both irreducible water saturation and wettability. These three parameters are highly related with $(C_{10})^2$. The computer software ECLIPSE 100 can be used to analyze the change of the relative permeability due to sonication in two phase immiscible flow.

  • PDF

Evaluation of Absorbent-Pervious Alkali-Activated Block Using Recycled Aggregate (순환골재를 이용한 보투수성 알칼리 결합재 블록의 성능평가)

  • Park, Kwang-Min;Kim, Hyung-Suk;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.160-167
    • /
    • 2017
  • The purpose of this study is to identify the possibility of developing the 100% Recycled-resources Absorbent-Pervious Alkali-activated Blocks using both the alkalli-binder and the recycled aggregate. In addition, It established a test method such as Void ratio, compressive strength, coefficient permeability, absorption, and evaporation. As a result, an alkali-activated using recycled aggregate block was able to manufacture an 24 MPa class absorbent-pervious blocks with a liquid type sodium silicate and early high temperature curing. In this case, water-holding capacity, absorption and relative absorption were more effective than the natural aggregates. In conclusion, Absorbent-pervious alkali-activated Block Using recycled aggregate has a surface temperature reducing effect of approximately 10 % compared to ordinary concrete block.

Establishment of Design Factors and Procedure for Permeable Asphalt Pavements Structural Design (투수성 아스팔트 포장 구조설계를 위한 설계인자 도출 및 설계방법에 관한 연구)

  • Yoo, Hyun Woo;Oh, Jeongho;Jung, Young Wook;Han, Shin In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.113-119
    • /
    • 2018
  • An extensive effort is actively being made to implement permeable pavement systems in urban or residential areas of South Korea in order to achieve efficient water circulation system based on low impact development (LID) design concept. This study aims to establish the design factors and procedure for permeable asphalt pavements structural design. Based on the review of previous studies, the 1993 AASHTO design method is found to be adequate for permeable pavements structural design. In this study, the design program based on 1993 AASHTO design procedure in conjunction with domestic roadway design standards was developed to accommodate the characteristics of permeable asphalt pavements. Primary design parameters such as structural layer coefficients of permeable materials were successfully quantified based on literature reviews and parallel analyses. Comparable design thicknesses were obtained between the developed permeable pavement design (PPD) program and Korea pavement research program (KPRP) under different levels of traffic and subgrade load bearing capacity.

Sensitivity Analysis of the Groundwater Flow Model Parameters in a Small Rural Watershed (농촌 소유역에서 지하수 유동 모형의 매개변수 민감도 분석)

  • Park, Ki-Jung;Chung, Sang-Ok
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.8
    • /
    • pp.687-693
    • /
    • 2004
  • The MODFLOW simulated results with varying input parameter values were compared and analyzed. To understand the relative importance of the input parameters, sensitivity analysis was carried out. The amount of sustainable yield was analyzed with respect to the hydraulic conductivity, specific yield, specific storage, aquifer thickness and the distance of the wells from the river. The results of sensitivity analysis showed that inflow from the river and the aquifer storage were sensitive to the specific yield and aquifer thickness. Sustainable yield was sensitive to the hydraulic conductivity and aquifer thickness. The results of this study can be used as a basic information for groundwater development and management plannings considering regional characteristics.

Characteristics of Sedimented Sandy in Nackdong River Delta (낙동강 델타지역 퇴적사질토의 특성)

  • Kim, Byeong-Jun;Kim, Jae-Hong;Jung, Jin-Yeong;Kwon, Jeong-Keun;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.25-33
    • /
    • 2016
  • This study was a basic research to obtain the knowledge of physical properties of the upper sedimented sandy soil in the Nakdong river delta area. The characteristics of shear strength and permeability with fine content and relative density were also investigated. The upper sedimented sandy soil near paddy and lower soft clay layers showed high percentage of fine content, and the rest parts had about 5% of fine content. The specific gravity regardless of depth and location was almost constant. The upper sedimented sandy soil mostly had particle size about 0.1 ~ 0.4mm regardless of sedimentation environment and has illite, a clay mineral, in the entire soil samples. The results of direct shear tests on remolded specimens of the upper sedimented sandy soil revealed that the friction angle and cohesion increased with relative density, but its effect was not significant. The fine content was significant, that as increasing it, the friction angle decreased and cohesion increased linearly. The permeability decreased with relative density and fine content, and the permeability of soil containing more than 15% of fine content was independent on the relative density.

Physical and Engineering Properties of Ash and Granite Soil (매립된 석탄 혼합회의 물리적 공학적 특성)

  • Kim, Dae-Hyeon;Kim, Sun-Hak;Kim, Ho-Chal;Goh, Tae-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.951-956
    • /
    • 2010
  • 본 연구에서는 $\bigcirc\bigcirc$화력발전소 회사장에 매립되고 있는 혼합회가 도로성토 및 철도노반 등 성토재로 사용될 수 있는가를 평가하기 위하여 물리적 및 역학적 특성을 평가하였다. 비중, 액소성 시험, 입도분석, XRD 시험, 강열감량시험, 실내투수시험을 통해 물리적 특성을 평가하였고 다짐시험, CBR 시험, 배수삼축압축시험을 실시하여 역학적 특성을 평가하였다. 두 가지 혼합회에 실험한 결과 비중은 2.181~2.189, 투수계수는 $1.32{\times}10^{-4}{\sim}1.89{\times}10^{-4}cm/sec$, 수정CBR은 19.5~21%, 배수마찰각은 $36.43{\sim}41.39^{\circ}$로 평가 되었다. 혼합회의 투수계수는 실트질 흙과 유사한 범위에 있으며 배수마찰각은 상대밀도가 큰 모래질 흙이 보일 수 있는 내부마찰각의 범위를 보였다. 본 연구에서 사용한 혼합회는 도로성토 및 철도노반 등 성토재로 사용할 수 있는 것으로 평가되었다.

  • PDF