DOI QR코드

DOI QR Code

Establishment of Design Factors and Procedure for Permeable Asphalt Pavements Structural Design

투수성 아스팔트 포장 구조설계를 위한 설계인자 도출 및 설계방법에 관한 연구

  • 유현우 (한국교통대학교 철도인프라시스템공학) ;
  • 오정호 (한국교통대학교 철도인프라시스템공학과) ;
  • 정영욱 ((주)서영엔지니어링 기술연구소) ;
  • 한신인 ((주)서영엔지니어링 기술연구소)
  • Received : 2017.12.08
  • Accepted : 2017.12.21
  • Published : 2018.02.01

Abstract

An extensive effort is actively being made to implement permeable pavement systems in urban or residential areas of South Korea in order to achieve efficient water circulation system based on low impact development (LID) design concept. This study aims to establish the design factors and procedure for permeable asphalt pavements structural design. Based on the review of previous studies, the 1993 AASHTO design method is found to be adequate for permeable pavements structural design. In this study, the design program based on 1993 AASHTO design procedure in conjunction with domestic roadway design standards was developed to accommodate the characteristics of permeable asphalt pavements. Primary design parameters such as structural layer coefficients of permeable materials were successfully quantified based on literature reviews and parallel analyses. Comparable design thicknesses were obtained between the developed permeable pavement design (PPD) program and Korea pavement research program (KPRP) under different levels of traffic and subgrade load bearing capacity.

현재 국내에서는 도심지 및 주거지에 원활한 물순환 구조를 이루기 위해 저영향개발에 근거한 투수성 포장 시스템 구축에 대한 시도를 하고 있다. 본 연구는 투수성 아스팔트 포장 구조 설계를 위한 포장인자 구축 및 설계법을 제안하고자 한다. 선행 연구 분석 결과, 1993년 AASHTO 설계법이 적합한 것으로 확인 되었다. 본 연구에서는 투수성 아스팔트 포장 재료의 상대구조계수 같은 주요 설계인자를 선행연구 분석을 통해 정량적으로 산정하였으며, 1993년 AASHTO 설계법 및 국내국도설계기준을 적용한 투수성 포장 구조 설계 프로그램을 개발하였다. 본 연구에서 개발된 프로그램 및 한국형 도로 설계법 프로그램을 비교한 결과 다양한 교통량 및 노반 지지력 조건에서 합리적인 포장 설계 두께를 산정하는 것을 확인하였다.

Keywords

References

  1. Applied Research Associates (2004). Guide for mechanistic-empirical design of new and rehabilitated pavement structures, Final Report, National Cooperative Highway Research Program Project 1-37A, Transportation Research Board, Washington, D.C.
  2. Gulliver, J. S. (2015). Permeable pavements in cold climates: state of the art and cold climate case studies, Dept. of Civil, Environmental and Geo-Engineering, University of Minnesota, Final Report, 2015-30.
  3. Hein, D., Strecker, E., Poresky, A. and Roseen, R. (2013a). Permeable shoulders with stone reservoirs, American Association of State Highway and Transportation Officials (AASHTO), NCHRP Project 25-25, Task 82, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC.
  4. Kim, N., Cho, S., Kim, K. and Ahn, J. (2016). Mix design for LID based permeable pavement system, Research Report, Kyonggi University (in Korean).
  5. Kim, S., Ahn, J., Teodosio, B. and Shin, H. (2015). "Numerical analysis of infiltration in permeable pavement system considering unsaturated characteristics." Journal of the Korea Society of Disaster Information, Vol. 11, No. 3, pp. 318-328 (in Korean). https://doi.org/10.15683/kosdi.2015.11.3.318
  6. Korea Roadway Construction and Design Practice Guideline, 2013. Ministry of land, Infrastructure and Transport (in Korean).
  7. Kwon, H., Oh, J. and Han, S. (2015). "A study on effect of geogrid reinforced crushed stone subbase in permeable pavement system." Journal of Korean Soc. Advanced Composite Structure, Vol. 6, No. 4, pp. 64-70. https://doi.org/10.11004/kosacs.2015.6.4.064
  8. Li, X., Jelen, M. and Smith, B. (2014). Implement permeable pavements to improve infrastructure sustainability-A case study, Compendium Paper of Transportation Research Board Annual Meeting, Washington DC.
  9. Mustaque, H., Affan, H. and Todd, L. (1997). "Structural layer coefficients of crumb rubber modified asphalt concrete mixtures." Journal of the Transportation Research Board, Transportation Research Record, Vol. 1583, No. 1, pp. 62-70.
  10. NAPA (National Asphalt Pavement Association) (2008). Porous asphalt pavements for stormwater management, Design, Construction and maintenance guide, Information Series 131, NAPA, Lanham, MD, USA.
  11. Rohde, G. T. (1994). "Determining pavement structural number from FWD testing." Transportation Research Record, Vol. 1448, No. 10, pp. 61-68.
  12. Smith, D. R. (2011). Permeable interlocking concrete pavements, 4th edition. Interlocking Concrete Pavement Institute (ICPI), Herndon, VA, USA.
  13. Tennis, P., Leming, M. and Akers, D. (2004). Pervious concrete pavements, EB302.02, Portland Cement Association, Skokie, Illinois, and National Ready Mixed Concrete Association, silver spring, Maryland, US.
  14. Timm, D. H., Robbins, M. M., Tran, N. and Rodenzo, C. (2014). "Recalibration procedures for the structural asphalt layer coefficient in the 1993 AASHTO pavement design guide." NCAT Report 14-08, Auburn University, AL, US.
  15. UNHSC (University of New Hampshire Stormwater Center) (2009). UNHSC Design specifications for porous asphalt pavement and infiltration beds, University of New Hampshire, Durham, NH, USA.
  16. Vancura, M., Khazanovich, L. and MacDonald, K. (2010). Performance evaluation of in-service pervious concrete pavements in cold weather, A Report submitted to Ready Mixed Concrete (RMC) Research & Education Foundation.