• Title/Summary/Keyword: 상대 침하

Search Result 78, Processing Time 0.02 seconds

Study(VII) on Development of Charts and Equations Predicting Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Allowable Axial Compressive Bearing Capacity Formulae - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(VII) - 지반의 허용압축지지력 산정공식 -)

  • Kwon, Oh-Kyun;Nam, Moon S.;Lee, Wonje;Yea, Geu Guwen;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.69-89
    • /
    • 2019
  • Design chart solution and table solution were proposed by Choi et al. (2019a), which conducted a parametric numerical study for the bored PHC piles socketed into weathered rocks through sandy soil layers. Based on the Choi et al. (2019a), the new prediction formulae for mobilized capacity components such as total capacity, total skin friction and skin friction of sand at the settlement of 5% pile diameter were proposed in this study. The proposed prediction formulae (EQ-G1) considers pile diameter, relative embedment length and ${\bar{N}}$ (i.e, corrected N) value and their verification results are as follows. The SRF calculated from the new proposed design method was 71~94%, which are greatly improved compared with results by the existing design method. The design efficiency of bearing capacity was in the range of reasonable design except 4 cases, and the design efficiency of the PHC pile was evaluated as 85%. Therefore, it is possible that allowable compressive load (Pall) of PHC pile can be utilized in the resonable design by means of the new proposed method using EQ-G1 equations. And the other new proposed equations of EQ-G2-3 can be utilized approximately in calculation of axial compressive bearing capacity components for prebored PHC pile.

Numerical Analysis on Liquefaction Countermeasure of Seabed under Submerged Breakwater using Concrete Mat Cover (for Regular Waves) (콘크리트매트 피복을 이용한 잠제하 해저지반에서의 액상화 대책공법에 관한 수치해석(규칙파 조건))

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.361-374
    • /
    • 2016
  • When the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure is generated significantly due to pore volume change associated with rearrangement soil grains. This effect leads a seabed liquefaction around and under structures as a result from decrease in the effective stress, and the possibility of structure failure is increased eventually. These facts shown above have been investigated in the previous studies related to regular and irregular waves. This study suggested a concrete mat for preventing the seabed liquefaction near the submerged breakwater. The concrete mat was mainly used as a countermeasure for scouring protection in riverbed. According to installation of the concrete mattress, the time and spatial series of the deformation of submerged breakwater, the pore water pressure, and the pore water pressure ratio in the seabed were investigated. Their results were also compared with those of the seabed unprotected with the concrete mat. The results presented were confirmed that the liquefaction potential of seabed under the concrete mattress is significantly reduced under regular wave field.

Utilization of Waste Tires as Soil Reinforcement; (1) Soil Reinforcing Effect (지반보강재로서 폐타이어의 활용; (1) 지반보강 효과)

  • 윤여원;최경순;윤길림;김방식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.107-117
    • /
    • 2004
  • This paper is to investigate the reinforcing effects of newly devised Tire-cell mat made of waste tires in sand. Parametric study on number of connection bolts between Tirecells, relative density of sand, embedded depth, number of reinforced layers and width of Tirecell mat was made by using plate loading tests. It is found that the number of connection bolt was enough to maintain the given pressure. The bearing capacity ratio(BCR), which is defined as the rate of ultimate bearing capacity of reinforced soil to that of unreinforced soil, is the highest at the lowest density. And the reinforcing effect can be obtained in case of embedded depth within 1.0B, where B is loading width. Also settlement reduction is the highest at the lowest density of sand. The effect of number of Tirecell reinforced layers with 0.4B to 0.5B interval is limited to 2 layers and further reinforcing effects can not be obtained beyond 3 layers. Especially, the bearing capacity increased remarkably at 1 layer of reinforcement and the degree of increase was small from 1 layer to 2 layers of reinforcement. The effect of mat width of Tirecell was not significant because of high stiffness of Tirecell although the maximum bearing capacity was shown at the 2.0B mat width and the reinforcing effects of Tirecell, in general, was prominent compared with those of commercial Geoweb.

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.

Evaluation of Tractive Performance of an Underwater Tracked Vehicle Based on Soil-track Interaction Theory (궤도-지반 상호작용 이론을 활용한 해저궤도차량의 구동성능 평가)

  • Baek, Sung-Ha;Shin, Gyu-Beom;Kwon, Osoon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.43-54
    • /
    • 2018
  • Underwater tracked vehicle is employed to perform underwater heavy works on saturated seafloor. When an underwater tracked vehicle travels on the seafloor, shearing action and ground settlement take place on the soil-track interface, which develops the soil thrust and soil resistance, respectively, and they restrict the tractive performance of an underwater tracked vehicle. Thus, unlike the paved road, underwater tracked vehicle performance does not solely rely on its engine thrust, but also on the soil-track interaction. This paper aimed at evaluating the tractive performance of an underwater tracked vehicle with respect to ground conditions (soil type, and relative density or consistency) and vehicle conditions (weight of vehicle, and geometry of track system), based on the soil-track interaction theory. The results showed that sandy ground and silty sandy ground generally provide sufficient tractions for an underwater tracked vehicle whereas tractive performance is very much restricted on clayey ground, especially for a heavy-weighted underwater tracked vehicle. Thus, it is concluded that an underwater tracked vehicle needs additional equipment to enhance the tractive performance on the clayey ground.

Reserch On The Fundamental Technology To Utilization Of Platform To Providing Mobile Underground Geospatial Infomation Map (모바일용 지하공간통합지도 제공 플랫폼 활용을 위한 기반 기술 연구)

  • LEE, Tae-Hyung;KIM, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.173-183
    • /
    • 2020
  • In the midst of the aging of underground facilities in urban areas and anxiety about road excavation safety accidents, the Ministry of Land, Infrastructure and Transport began to build Underground Geospatial Infomation Map from 2015 as part of the 「ground subsidence prevention measures」 and efficient use of underground spaces. So, the scope is spreading every year. The current Underground Geospatial Infomation Map information is web-based and is operated in a desktop environment, so it is true that there are some limitations in its use in a field environment such as an excavation construction site. The Underground Geospatial Infomation Map, built and operated in a web-based environment, is a large-scale 3D data. Therefore, in order to service by transmitting data to the field without delay, it is necessary to lighten the Underground Geospatial Infomation Map data. In addition, the current Underground Geospatial Infomation Map is not unified in data formats such as 3DS and COLLADA, and the coordinate system method is also different in relative coordinates and absolute coordinates. In this study, by analyzing domestic and overseas prior research and technical use cases, a mobile Underground Geospatial Infomation Map data format and a lightweight method were presented, and a technology development was conducted to create a mobile underground space integration map in the presented format. In addition, the weight reduction rate was tested by applying 3D data compression technology so that data can be transmitted quickly in the field, and technology was developed that can be used by decompressing 3D data compressed in the field. finally, it aims to supplement the technology experimentally developed in this study and conduct additional research to produce it as software that can be used in the excavation site and use it.

Maximum Shear Modulus of Sand - Tire Chip Mixtures under Repetitive KO Loading Conditions (반복하중 재하 시 모래-타이어칩 혼합토의 최대전단탄성계수 변화)

  • Ryu, Byeonguk;Park, Junghee;Choo, Hyunwook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.41-50
    • /
    • 2021
  • This study investigated the changes in engineering characteristics of sand-tire chip mixtures during repetitive loading. To quantify the changes in the maximum shear modulus according to the tire chip content in the mixtures and the particle size ratio between sand particle and tire chip, the samples were prepared with tire chip content of TC = 0, 10, 20, 40, 60, and 100%, and the particle size ratios SR were also set to be SR = 0.44, 1.27, 1.87, and 4.00. The stress of the prepared sample was applied through a pneumatic cylinder. The experiment was conducted in the order of static loading (= 50 kPa), cyclic loading (= 50-150 kPa), static loading (= 400 kPa) and unloading. The stress applied to tested mixtures was controlled by a pressure panel and a pneumatic valve by using an air compressor. The shear wave velocity was measured during static and cyclic loadings by installing bender elements at the upper and lower caps of the mold. The results demonstrated that the change in maximum shear modulus of all tested materials with varying SR during repetitive loading is the most significant when TC ~ 40%. In addition, the mixture with smaller SR at a given TC shows greater increase in maximum shear modulus during repetitive loading.

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.