DOI QR코드

DOI QR Code

Maximum Shear Modulus of Sand - Tire Chip Mixtures under Repetitive KO Loading Conditions

반복하중 재하 시 모래-타이어칩 혼합토의 최대전단탄성계수 변화

  • Ryu, Byeonguk (Dept. of Civil Engineering, Kyung Hee Univ.) ;
  • Park, Junghee (School of Civil, Environmental and Architectural Engineering, Korea Univ.) ;
  • Choo, Hyunwook (Dept. of Civil and Environmental Engineering, Hanyang Univ.)
  • Received : 2021.11.04
  • Accepted : 2021.11.17
  • Published : 2021.12.01

Abstract

This study investigated the changes in engineering characteristics of sand-tire chip mixtures during repetitive loading. To quantify the changes in the maximum shear modulus according to the tire chip content in the mixtures and the particle size ratio between sand particle and tire chip, the samples were prepared with tire chip content of TC = 0, 10, 20, 40, 60, and 100%, and the particle size ratios SR were also set to be SR = 0.44, 1.27, 1.87, and 4.00. The stress of the prepared sample was applied through a pneumatic cylinder. The experiment was conducted in the order of static loading (= 50 kPa), cyclic loading (= 50-150 kPa), static loading (= 400 kPa) and unloading. The stress applied to tested mixtures was controlled by a pressure panel and a pneumatic valve by using an air compressor. The shear wave velocity was measured during static and cyclic loadings by installing bender elements at the upper and lower caps of the mold. The results demonstrated that the change in maximum shear modulus of all tested materials with varying SR during repetitive loading is the most significant when TC ~ 40%. In addition, the mixture with smaller SR at a given TC shows greater increase in maximum shear modulus during repetitive loading.

본 연구의 목적은 모래와 타이어칩 혼합토의 반복하중조건 전후 공학적 특성 변화를 파악하는 것이다. 반복하중 시, 시료에 함유된 타이어칩 함량 및 모래와 타이어칩 입자 간의 크기비에 따른 최대전단탄성계수의 변화를 정량화 하고자, 전체 중량 대비 타이어칩 중량을 0, 10, 20, 40, 60, 100%로 하여 시료를 조성하였으며, 타이어칩 평균입경 대비 모래의 평균입경(입자크기비)을 0.44, 1.27, 1.87, 4.00으로 설정하여 혼합토를 조성하였다. 초기 상대밀도 50%의 시료를 floating wall 형태의 몰드에 조성 후, 공기압 축기(air compressor), 압력 패널(pressure panel) 및 뉴메틱 밸브(pneumatic valve)를 이용하여 정하중 재하(=50kPa), 반복하중 재하(=50-150kPa), 정하중 재하(=400kPa) 및 제하 순으로 실험이 이루어 졌다. 위의 실험이 진행됨에 따라 시료의 침하량과 전단파속도를 측정하였다. 시험 결과, 모래-타이어칩 혼합토에 가해지는 반복하중은 시료를 이루는 입자 간 접촉을 타이어칩-타이어칩 또는 타이어칩-모래에서 모래-타이어칩 또는 모래-모래로 전환시켰으며, 이로 인해 타이어칩 함량 40%에서 가장 큰 최대전단탄성계수의 증가를 확인하였다. 또한 입자크기비가 감소함에 따라 동일 타이어칩 함량에서 반복하중 시 최대전단탄성계수 증가량은 증가하였다.

Keywords

Acknowledgement

본 연구는 한국연구재단 이공분야기초연구사업(2019R1C1C1005310) 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Anbazhagan, P., Manohar, D. R. and Rohit, D. (2017), Influence of size of granulated rubber and tyre chips on the shear strength characteristics of sand-rubber mix, Geomechanics and Geoengineering : An International Journal, Vol. 12, No. 4, pp. 266~278. https://doi.org/10.1080/17486025.2016.1222454
  2. Bergado, D. T., Youwai, S. and Rittirong, A. (2005), Strength and deformation characteristics of flat and cubical rubber tyre chip-sand mixtures, Geotechnique, Vol. 55, No. 8, pp. 603~606. https://doi.org/10.1680/geot.2005.55.8.603
  3. Chong, S. H. and Santamarina, J. C. (2016), "Sands subjected to vertical repetitive loading under zero lateral strain: Accumulation models, Terminal densities, and Settelement", Canadian Geotechnical Journal, 53(12), 2039~2046. https://doi.org/10.1139/cgj-2016-0032
  4. Choo, H. and Burns, S. (2015), Shear wave velocity of granular mixtures of silica particles as a function of finer fraction, size ratios and void ratios, Granular Matter, Vol. 17, No. 5, pp. 567~578. https://doi.org/10.1007/s10035-015-0580-2
  5. Das, S. and Bhowmik, D. (2020), Small-strain dynamic behavior of sand and sand-crumb rubber mixture for different sizes of crumb rubber particle, Journal of Materials in Civil ENgineering, Vol. 33, No. 11, 04020334.
  6. Evans, T. and Valdes, J. (2011), The microstructure of particulate mixtures in one-dimensional compression: numerical studies, Granular Matter, Vol. 13, No. 5, pp. 657~669. https://doi.org/10.1007/s10035-011-0278-z
  7. Feng, Z. and Sutter, K. G. (2000), Dynamic properties of granulated rubber/sand mixtures. Geotechnical Testing Journal, Vol. 23, No. 3, pp. 338~344. https://doi.org/10.1520/GTJ11055J
  8. Holtz, R. D., Kovacs, W. D. and Sheahan, T. C. (2011), An introduction to geotechnical engineering (2. ed., international ed. ed.). Upper Saddle River, NJ [u.a.], Pearson, pp. 357~359.
  9. Kim, H. -. and Santamarina, J. C. (2008), Sand-rubber mixtures (large rubber chips). Canadian Geotechnical Journal, Vol. 45, No. 10, pp. 1457~1466. https://doi.org/10.1139/T08-070
  10. Kim, S. Y., Park, J. and Lee, J. S. (2021), Coarse-fine mixtures subjected to repetitive Ko loading: Effects of fines fraction, particle shape, and size ratio, Powder Technology, Vol. 377, pp. 575~584. https://doi.org/10.1016/j.powtec.2020.09.017
  11. Kohji Tokimatus and Akihiko Uchida. (1990), Correlation between liquefaction resistance and shear wave velocity, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 30, No. 2, pp. 33~42.
  12. Ku, T., Subramanian, S., Moon, S. W. and Jung, J. (2017), Stress dependency of shear-wave velocity measurements in soils, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 143, No. 2. 04016092. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001592
  13. Lee, C., Truong, Q. H., Lee, W. and Lee, J. (2010), Characteristics of Rubber-Sand Particle Mixtures according to Size Ratio, Journal of Materials in Civil Engineering, 22(4), pp. 323~331. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000027
  14. Lee, J. S., Dodds, J. and Santamarina, J. C. (2007), Behavior of rigid-soft particle mixtures, Journal of materials in civil engineering, Vol. 19, No. 2, pp.179-184. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(179)
  15. Lee, C., Shin, H. and Lee, J. S. (2014), Behavior of sand-rubber particle mixtures: experimental observations and numerical simulations, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 38, No. 16, pp. 1651~1663. https://doi.org/10.1002/nag.2264
  16. Madhusudhan, B. R., Boominathan, A. A. and Banerjee, S. (2017), Static and Large-Strain Dynamic Properties of Sand-Rubber Tire Shred Mixtures, American Society of Civil Engineers, Vol. 29, No. 10, 04017165.
  17. Marto, A., Latifi, N., Moradi, R., Oghabi, M. and Zolfeghari, S. Y. (2013), Shear properties of sand-tire chips mixtures, Electronic Journal of Geotechnical Engineering, Vol. 18, No. 2, pp. 325~334.
  18. Masad, E., Taha, R., Ho, C. and Papagiannakis, T. (1996), Engineering Properties of Tire/Soil Mixtures as a Lightweight Fill Material, Geotechnical Testing Journal, Vol. 19, No. 3, pp. 297~304. https://doi.org/10.1520/GTJ10355J
  19. Ghazavi, M. (2004), Shear strength characteristics of sand-mixed with granular rubber, Geotechnical & Geological Engineering, Vol. 22, No. 3, pp. 401~416. https://doi.org/10.1023/B:GEGE.0000025035.74092.6c
  20. Mitchell, J.K. and Kenichi Soga, (2005), Fundamentals of Soil Behavior (third ed.), Hoboken, NJ, John Wiley & Sons Inc, pp. 325~335.
  21. Park, J. and Santamarina, J. C. (2020), Soil Response to Repetitive Changes in Pore-Water Pressure under Deviatoric Loading, American Society of Civil Engineer, Vol. 146, No. 5, 04020023.
  22. Park, J. (2017), Long-term response of soils subjected to repetitive mechanical load : Engineering implications, Engineering Implication, Ph D. disseration, Georgia Institute of Technology, Georgia, pp. 32~41.
  23. Perez, J. C., Kwok, C. Y. and Senetakis, K. (2016), Effect of rubber size on the behaviour of sand-rubber mixtures: A numerical investigation, Computers and Geotechnics, Vol. 80, pp. 199~214. https://doi.org/10.1016/j.compgeo.2016.07.005
  24. Perez, J. L., Kwok, C. Y. and Senetakis, K. (2017), Micro-mechanical analyses of the effect of rubber size and content on sand-rubber mixtures at the critical state, Geotextiles and Geomembranes, Vol. 45, No. 2, pp. 81~97. https://doi.org/10.1016/j.geotexmem.2016.11.005
  25. Rao, G. V. and Dutta, R. K. (2006), Compressibility and strength behavior of sand-tyre chip mixtures, Geotechnical & Geological Engineering, Vol. 24, No. 3, pp. 711~724. https://doi.org/10.1007/s10706-004-4006-x
  26. Roesler, S. K. (1979), Anisotropic shear modulus due to stress anisotropy, Journal of the Geotechnical Engineering Division, Vol. 105, No. 7, pp. 871~880. https://doi.org/10.1061/AJGEB6.0000835
  27. Rouhanifar, S., Afrazi, M., Fakhimi, A. and Yazdani, M. (2021), Strength and deformation behaviour of sand-rubber mixture, International Journal of Geotechnical Engineering, Vol. 15, No. 9, pp. 1078~1099. https://doi.org/10.1080/19386362.2020.1812193
  28. Santamarina, J. C., Kleinm K. A. and Fam. M. A. (2001), Soils and Waves, J. Wiley & Sons, Chichester; New York.
  29. Sheikh, N. M., Mashiri, M. S., Vinod, J. S. and Tsang, H. (2013). Shear and compressibility behavior of sand-tire crumb mixtures, American Society of Civil Engineers, 25(10), pp. 1366~1374.
  30. Korea Automobile Manufacturers Association (2020), www.kama.or.kr
  31. Korea Tire Manufacturers Association (2017), http://www.kotma.or.kr