• Title/Summary/Keyword: 상대부착강도

Search Result 25, Processing Time 0.03 seconds

Bond Properties of High Strength Steel Rebar in High Strength Steel Fiber Reinforced Concrete (강섬유 보강 고강도콘크리트와 고장력 철근의 부착 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Jang, Chang-Il;Lee, Sang-Woo;Kim, Wan-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.631-637
    • /
    • 2007
  • This study was to evaluate bond properties between high-strength steel fiber reinforced concrete and high strength steel rebar. An direct bond test were performed to evaluate the bond performance of high strength steel rebar in two types of high-strength concrete with steel fiber volume fraction (0, 20, $40kg/m^3$). Also, relative bond strength was defined to determine the effect of steel fiber volume fraction on bond strength. The bond test results showed that the bond performance of high strength steel rebar and high strength concrete tended to increase with higher compressive strength and steel fiber volume fraction. Relative bond strength which performed to analyze effect of steel fiber volume fraction showed increased relative bond strength with increased steel fiber volume fraction.

Bond Properties of CFRP Rebar in Fiber Reinforced High Strength Concrete with Surface Treatment Methods of Reinforcing Fibers (보강섬유의 표면처리에 따른 섬유보강 고강도콘크리트와 CFRP 보강근의 부착특성)

  • Park, Chan-Gi;Won, Jong-Pil;Cha, Sang-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.275-282
    • /
    • 2009
  • The effects of surface treatment method of reinforcing fiber on the bonding strength between carbon fiber reinforced polymer rebar (CFRP rebar) and high strength concrete have been evaluated in this study. The structural PVA fiber is coated with a proprietary hydrophobicoiling agent and crimped type polyolefin based structural synthetic fiber is deformed with a geometrical modification were used for the reinforcing fiber. The compressive tests have been performed to evaluate the strength property of high strength concrete depending on the surface treatment method of fiber. The bonding property between the high strength concrete and the CFRP rebar was evaluated by means of direct bonding test. The test results indicated that the surface treatment method of fiber effect on the bonding behavior of high strength concrete and CFRP rebar. Also, as the development and propagation of splitting cracks were controled by adding fibers into the high strength concrete, the bonding behavior, bond strength and relative bonding strength of CFRP rebar and high strength concrete were significantly improved.

Experimental Evaluation of Bearing and Bond Strengths in Compression Splices (철근 압축이음에서 지압강도와 부착강도의 실험적 평가)

  • Chun, Sung-Chul;Lee, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • Compression splices are required for all compression members in almost all of the floors in high-rise buildings. Therefore, a clear understanding of the behavior of compression splices can provide a rational design of compression splices. Tests of compression splices with bearing only and bond only cases were conducted to investigate the component resistance characteristics of compression splices. Test results showed that the circumferential tensile stresses induced by bearing and bond overlapped at the end of the splice length deterred bond and bearing splices from developing target splicing strength when both normal bond and bearing splices were used. In particular, the bearing strength was more significantly reduced than the bond strength since the bearing relied on the limited area near the end of the splice length. However, the strength of the normal splice was always higher than the strength of the bond only or the bearing only case. Consequently, the study results showed that splice strength in compression cannot be improved by means of removing bond or bearing. In addition, the bond strength in bond only splices was nearly same as the bond strength in tension splices and the strength increase of compression splice is attributed to end bearing only characteristic.

Effects of Bar Deformation on Bond between Reinforcing Steel and Concrete Subjected In Cyclic Loading (반복하중시 철근의 마디형태에 따른 부착특성)

  • 최완철;이재열;이웅세
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.244-250
    • /
    • 2001
  • One of the reasons for brittle failure in reinforced concrete structures subjected to severe earthquake is due to large slip between reinforcing steel and concrete. This study aims to evaluate effects of deformation patterns of ribbed reinforcing bars on bond under cyclic loading. Bond test specimens were constructed with machined bars to test the newly developed reinforcing bars with high relative rib areas. The degree of confinement is also another key parameter in this bond test. From the test results under monotonic and cyclic loading, bond strength and stiffness were evaluated. Bond strength and bond stiffness increase as relative rib areas under cyclic loading for specimens highly confined by transverse reinforcement. The increase rates of the bond performance under cyclic loading are larger than those of specimens under monotonic loading. The developed bars with high relative rib areas will contribute for better bond performance for reinforced concrete structures subjected to severe seismic loadings.

An Experimental Study on Bond Strength of High-Strength Reinforcing Bars with High Relative Rib Area (높은 마디면적 고강도 철근의 부착강도에 관한 실험적 연구)

  • Hong Geon-Ho;Choi Dong-Uk;Choi Oan-Chul;Hong Gi-Suop
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.375-384
    • /
    • 2005
  • The effects of bar deformation properties on bond of steel reinforcing bars to concrete are experimentally studied to predict the bond strength. Based on the previous research about high relative rib area, bond strength between reinforcing bars and concrete can be improved by the control of rib height and spacing. But, the equations in Korean code provisions to estimate development and splice length do not include these specifications of reinforcing bars. So the purpose of this paper is to determine the effect of relative rib area to the bond strength. This paper describes 2 kinds of experimental researches. Thirty beam-end specimens were tested to investigate the effects of bar size and relative rib areas ranging from 0.112 to 0.162. And, twelve lap-splice beam specimens were tested to the same variables. Each test results are normalized and compared with the proposed equations of ACI 408 committee. The results show that bond strength is increased as bar size and the relative rib area(Rr) increase. The distribution of flexural cracks and failure aspect do not appear to be affected by $R_r$.

Effects of Bar Deformation Height on Bond Degradation Subject to Cyclic loading (반복하중시 철근 마디높이에 따른 부착 손상특성)

  • Lee, Jae-Yuel;Kim, Byong-Kook;Hong, Gi-Suop;Choi, Oan-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • One of the reasons for brittle failure in reinforced concrete structures subjected to severe earthquake is due to large local bond-slippage of bars resulting in fast bond degradation between reinforcing bars and concrete. This study aims to evaluate effects of bar deformation height on bond performance, specially, bond degradation under cyclic loading. Bond test specimens were constructed with machined bars with high relative rib areas. The degree of confinement by transverse bars is also another key parameters in this bond test. From test results, amounts of energy dissipation are calculated and compared for each parameter. Test results show that bond strength and stiffness drops significantly as cycles increases. The confinement and high relative rib area are effective to delay bond degradation, as the reduction of bond strength of cyclic loading compared to monotonic loading decreased for bars with large confinement and high relative rib areas. The energy dissipation also increases as the degree of confinement and relative rib area increases. However, tested bars with very high rib areas show that the bond may be damaged at relatively small slip because of high stiffness. The study will help to understand the bond degradation mechanism due to bar deformation height under cyclic loading and be useful to develop new deformed bars with high relative rib areas.

Evaluation of Residual Bond Stress between Carbon-fiber Reinforced Polymer and Steel Rebar Using Ultra-High-Performance-Concrete after Elevated Temperature (초고강도 콘크리트를 활용한 고온가열 이후의 탄소 보강근과 철근의 잔류 부착성능 평가)

  • Yoo, Sun-Jae;Lee, Ho-Jin;Yuan, Tian-Feng;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.169-176
    • /
    • 2021
  • In this study, pull-out tests were conducted at room temperature, 150 ℃ and 250 ℃ to evaluate the residual bond strength of carbon fiber reinforcement polymer, CFRP after elevated temperature and deformed steel rebar of D10 and D13 were also evaluated after the high temperature heating for comparison. As a result of the experiment, the bond strength of the CFRP after 150 ℃ and 250 ℃ decreased by 9.94 % and 41 %, respectively. On the other hand, after thermal heating, both the steel rebar of D10 and D13 had a lower rate of reduction in bond strength than that of the CFRP. Also slip at the maximum bond strength also decreased after the heating for both the CFRP and the rebars. Through it, the correlation between the bond strength and the slip reduction due to thermal heating was confirmed and bond slip models were presented. Finally the experimental result was evaluated as relative bond strength to identify the residual bond performance of the CFRP and the rebar after the heating was confirmed by comparing with the existing test result of the bond strength after elevated temperature.

A Study on the Properties of Mortar with Recycled Fine Aggregate (순환잔골재를 사용한 모르타르의 제물성에 관한 실험적 연구)

  • Moon, Dae-Joong;Choi, Jae Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.96-100
    • /
    • 2009
  • The properties of recycled fine aggregates which had different source concrete were examined by mortar test. With higher strength of source concrete, specific gravity of recycled fine aggregate was higher and absorption of recycled fine aggregate was lower due to reduction of the volume of adhered cement paste. The compressive strength and flexible strength of mortar with recycled fine aggregate were affected by the interface boundary of new mortar and the strength of adhered mortar. Strength development of mortar with recycled fine aggregate reduced because recycled fine aggregate become a porous material with the smaller strength of source concrete. The drying shrinkage of mortar was about$800{\sim}2000{\mu}m/m$. It was about 1.5 times than that of mortar with natural fine aggregate. Relative dynamic modulus of elasticity was a similar level with that of mortar with natural fine aggregate.

  • PDF

Experimental Evaluation on Bond Strengths of Reinforcing Bar in Coils with Improved Machinability during Straightening Process (직선화 가공성을 고려한 코일철근의 실험적 부착강도 평가)

  • Chun, Sung-Chul;Choi, Oan-Chul;Jin, Jong-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • A new deformation of reinforcing bar in coils was proposed to improve a machinability of straightening process, which has crescent-shaped transverse ribs with an inclination angle of 50 degrees, a crest width of $0.15d_b$, and a flank inclination of 55 degrees. The proposed deformation can increase contact area between a surface of re-bar and a groove of a roller during a straightening process and, therefore, it might reduce a damage of ribs, improve a final straightness, and enhance an efficiency of the straightening process. Splice tests were conducted to evaluate bond strengths of three types of re-bar in coils including the proposed re-bar, of which the inclination angles of transverse ribs were 50, 60, and 90 degrees, respectively. Test results show that the re-bars in coils have higher bond strengths than predicted strengths by equations of Orangun et al., ACI 408, and KCI by at least 10%. Correlation coefficients of bond strengths between a straight bar and re-bars in coils are 0.94 and more. Consequently, equations of the KCI code for determining development and splice lengths can be applied to the tested re-bars in coils.

Attenuation Characteristics of AE/MA Waves in Charcoal Granite (차콜 화강암에서의 AE/MA파의 감쇄특성)

  • 김교원
    • The Journal of Engineering Geology
    • /
    • v.6 no.3
    • /
    • pp.131-136
    • /
    • 1996
  • Attenuation characteristics of AF/MA motions which involve high frequencies were investigated through pencil-lead fracture tests on a fine-grained granite specimen. For the study, calibrated six transducers were employed to detect the signals and the pencil-lead was fractured as a step unloading force to generate AE/MA signals. The arnplitude AE/MA waves is affected by the relative orientation of source and transducer as well as the source distance. The attenuation constant for Charcoal granite is obtained as 1.058 which could be applied for a given ray-path regardless of the relative orientation of source and transducer.

  • PDF