• Title/Summary/Keyword: 상대밀도

Search Result 379, Processing Time 0.022 seconds

Hydraulic Conditions to Density Currents in the Estuary (하구에 있어서의 밀도유적 수리조건)

  • 이문옥;이삼노
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1990
  • Experimental studies oil the density currents were made in order to investigate their hydraulic conditions in the estuary. Interfacial forms in the flow direction became sharply with increasing densimetric Froude number in the estuary which arrested saline wedge exists. Interfacial thicknesses were almost constant in the open channel, while they abruptly increased out of channel and they also decreased as overall Richardson number increases. Densimetric Froude number of river mouth showed that it was not necessarily 1.0 and varies with the upper layer thickness. On the other hand, water level there tended to increase with increasing relative densities. It is observed in the Sumjin River Estuary that a strong density front has been formed between freshwater and ocean waters.

  • PDF

Development of GPS-RTK Algorithm for Improving Geodetic Performance in Short Baseline (단기선 측지 성능 향상을 위한 GPS-RTK 알고리즘 개발)

  • Choi, Byung-Kyu;Lee, Sang-Jeong;Park, Jong-Uk;Baek, Jeong-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.461-467
    • /
    • 2009
  • Relative positioning technique by GPS that can obtain the high positioning accuracy has been used for generation of high precision positioning with elimination or the reduction of the common errors. This paper gives some algorithms for RTK and considers the filter to estimate the positioning information and integer ambiguities at each epoch in the whole algorithms. The extended kalman filter has been employed to estimate the state parameters and the modified LAMBDA to resolve the integer ambiguities. The data processing was performed by GPS single frequency and dual frequency in short baseline. The verification procedure of these positioning compared with results from Bernese 5.0 software. We presented some statistic values on positioning errors and the rates of integer ambiguity resolution.

A Study on the Determination of Vibration Criteria for Vibration Sensitive Equipments Using Impact Test (충격시험을 이용한 고정밀장비의 진동허용규제치 결정기법에 관한 연구)

  • 이홍기;박해동;김두훈;김사수
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.247-254
    • /
    • 1997
  • In the case of a precision equipment, it requires a vibration free environment to provide its proper function. Especially, lithography and inspection devices, which have sub-nanometer class high accuracy and resolution, have come to necessity for producing more improved giga class semiconductor wafers. This high technology equipments require very strict environmental vibration standard in proportion to the accuracy of the manufacturing, inspecting devices. The vibration criteria are usually obtained either by the real vibration exciting test on the equipment or by the analytical calculation. This paper proposes a new method to solve this problem at a time. The permissible vibration level to a precision equipment can be easily obtained by analyzing a process of Frequency Response Function. This paper also demonstrates its effectiveness by applying the proposed method to finding the vibration criteria of a Computer Hard Disk Driver by Impact Test.

  • PDF

Performance of Fresh and Hardened Ultra High Performance Concrete without Heat Treatment (상온 양생한 초고성능 콘크리트(UHPC)의 경화 전과 후의 성능 관계)

  • Kang, Sung-Hoon;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.23-34
    • /
    • 2014
  • This study investigates the relationship between the performance of fresh and hardened Ultra-High Performance Concrete (UHPC) without heat treatment. The performance of fresh UHPC is determined by the slump flow test related to the fluidity of concrete mixtures, and the air content test. The variables of these tests are the water to binder ratio, superplasticizer dosages and volume fractions of steel fiber. Generally, insufficient fluidity and excessive air contents in concrete mixtures lead to the insufficient packing density related to the performance of harden concrete. The performance of hardened UHPC is determined by the compressive and flexural tensile tests. The results of the fresh UHPC tests show that there is the linear correlation between each variable and the slump flow diameter, and that the slump flow diameter is linearly decreased as the air content ratio increase. Using these results, the formula is developed to predict the fresh performance before mixing UHPC. The results of the hardened UHPC tests show that the hardened performance is not influenced by the air content ratio in the range of 3.2 to 4.2 per cent. However, the flexural tensile strength dominantly influenced by the volume fractions of steel fiber.

Biomass Expansion Factors, Allometric Equations and Stand Biomass of Pinus thunbergii in Southern Korea (전남 여수지역 곰솔의 현존량 확장계수, 상대생장식 및 임분 현존량)

  • Park, In-Hyeop;Kim, So-Dam
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.5
    • /
    • pp.507-512
    • /
    • 2018
  • Three natural Pinus thunbergii stands in southern Korea were studied to investigate stem density, biomass expansion factors, allometric equations and stand biomass. Stand ages of stand 1, 2 and 3 were 15, 29 and 45 years old, respectively. Three $10m{\times}10m$ plots were set up, five sample trees were cut and roots of three sample trees were excavated for dimension analysis in each stand. Stem density of stand 1, 2 and 3 were $0.450g/cm^3$, $0.440/cm^3$ and $0.457g/cm^3$, respectively, and there was no significant difference among the three stands. Biomass expansion factors of above-ground and total tree decreased with increasing stand age. Above-ground biomass expansion factor of stand 1 was significantly higher than those of stand 2 and 3, and total tree biomass expansion factor of stand 1 was significantly higher than that of stand 3. Allometric equations were developed for the 15 sample trees of the three stands based on D or $D^2H$. Above-ground biomass of stand 1, 2 and 3 were 50.72t/ha, 89.92t/ha, 194.07t/ha, respectively, and total tree biomass of stand 1, 2 and 3 were 61.62t/ha, 113.12t/ha, 248.36t/ha, respetively.

Thermoelectric Properties of Al4C3-doped α-SiC (Al4C3 첨가 α-SiC의 열전변환특성)

  • 박영석;배철훈
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.991-997
    • /
    • 2003
  • The effect of A1$_4$C$_3$ additive on the thermoelectric properties of SiC ceramics were studied. Porous SiC ceramics with 47∼59% relative density were fabricated by sintering the pressed $\alpha$-SiC powder compacts with A1$_4$C$_3$at 2100∼220$0^{\circ}C$ for 3 h in Ar atmosphere. Crystalline phases of the sintered bodies were identified by powder X-Ray Diffraction (XRD) and their microstructures were observed with a Scanning Electron Microscope (SEM). In the case of A1$_4$C$_3$ addition, the phase transformation of 6H-SiC to 4H-SiC could be observed during sintering. The Seebeck coefficient and electrical conductivity were measured at 550∼95$0^{\circ}C$ in Ar atmosphere. In the case of undoped specimens, the Seebeck coefficients were positive (p-type semiconducting) possibly due to a dominant effect of the acceptor impurities (Al, Fe) contained in the starting powder and electrical conductivity increased as increasing sintering temperature. Electrical conductivity of A1$_4$C$_3$doped specimen is larger than that of undoped specimen under the same condition, which might be due to the reverse phase transformation and increasing of carrier density. And the Seebeck coefficient of A1$_4$C$_3$ doped specimen is also larger than that of undoped specimen. The density of specimen, the amount of addition and sintering atmosphere had significant effects on the thermoelectric property.

The Load Distribution Characteristics of Pile Group under Lateral Loading (수평력을 받는 무리말뚝의 하중분담특성)

  • Ahn, Byungchul;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.17-22
    • /
    • 2010
  • This paper analyzed the characteristics of p-multiplier and the load distribution of H-pile group installed in weathered soil under horizontal loading. The results of this study conducted in pile arrangement ($2{\times}3$, $3{\times}3$), the pile center to center spacing (2D, 4D, 6D), and soil density (relative density: 40%, 80%) were drawn as follows. As to the average horizontal loading applied to each pile in pile groups, the fewer number of piles was, the larger average horizontal resistance became. As the result of analysis on p-y curves of single piles and pile groups according to the pile distance and the soil density, as the pile spacing was increased from 2D to 6D, the interaction coefficients of pile group showed 0.85~0.94 (piles in the front row), 0.57~0.79 (piles in the middle row), and 0.60~0.71 (piles in the rear row) in the loose ground and showed 0.76~0.82 (piles in the front row), 0.58~0.73 (piles in the middle row), and 0.53~0.70 (piles in the rear row) in the dense ground. As above, the wider pile distance was, the larger interaction coefficient value was shown among piles. In addition, piles in the front row showed bigger interaction coefficients than that of piles in the middle and back row.

The Effects of the CT Voltages on the Dose Calculated by a Commercial RTP System (CT 관전압이 상용 전산화치료계획장치의 선량계산에 미치는 영향)

  • 강세권;조병철;박희철;배훈식
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • The relationship between the dose calculated with a radiotherapy treatment planning system (RTPS) and CT number verses the relative electron density curve was investigated for various CT voltages and beam qualifies. We obtained the relationship between the CT numbers and electron densities of the tissue equivalent materials for various CT voltages and beam qualifies. At lower CT voltages, the higher density materials, like cortical bone, showed larger CT numbers and the soft tissues showed no variations. We peformed a phantom study in a RTPS, where a phantom consisted of lung and bone legions in water. We calculated the dose received behind the lung and bone regions for 6 MV photon beams, in which the regions below the lung, water and bone received higher doses in this listed order. The result was the same for 10 MV photon beams. For the clinical application, the doses were calculated for the lung and pelvis. No difference was observed when using different electron density conversion tables with various CT voltages from a same CT. A relative dose difference of 1.5% was obtained when the CT machine for the density conversion table was different from that for the CT image for planning.

  • PDF

Recompression Properties of Sand in Post-Liquefaction Process According to Relative Density and Cyclic Loading History (상대밀도와 반복전단이력의 차이에 의한 모래의 액상화 후 재압축 특성)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • Ground failure by liquefaction can occur not only during shaking but also as the result of the post-liquefaction process after an earthquake. During the process of ground deformation and failure, excess pore water pressure in soil is redistributed, which can then lead to changes in the effective stress of soils. Therefore, in order to provide a further understanding of the phenomenon, we have to estimate the properties of effective stress during the recompression process in post-liquefaction as well, not only the total amount of pore water drained. The primary objectives of this study are to determine and compare the recompression properties in the post-liquefaction process in terms of the relationship between volumetric strains and mean effective stresses under the various conditions of relative density and shear stress history. In all experimental cases, the volumetric strains increase greatly in the low effective stress level, almost to the zero zone, and granite soil, which has fine grains, undergoes gradual changes in the relationship between volumetric strains and mean effective stresses compared with fine sand. And, we can also find that recompression properties in the post-liquefaction process by cyclic loading depend highly on the dissipation energy and maximum shear strain, and this fact can be obtained in all cases regardless of the existence of fine content, relative density, and loading history. Especially, granite soil having fine grains can be defined uniformly in the relationship between dissipation energy and maximum volumetric strain, while fine sand cannot be so uniformly defined.

Effect of Relative Density and Fines Content on Pullout Resistance Performance of Drilled Shafts (상대밀도와 세립분 함유율이 현장타설말뚝의 인발저항 성능에 미치는 영향에 관한 연구)

  • You, Seung-Kyong;Hong, Gigwon;Jeong, Minwoo;Shin, Heesoo;Lee, Kwang-Wu;Ryu, Jeongho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.37-47
    • /
    • 2018
  • This paper described a results of direct shear test and pullout test by using soil supported by drilled shafts in order to evaluate the effect of relative density and fines content on pullout resistance performance of drilled shafts. The result of direct shear test showed that the variation characteristics of internal friction angle and cohesion could be confirmed quantitatively. The result of pullout test also showed that the effect of relative density and fines content on pullout resistance performance of drilled shafts was confirmed. That is, the contribution of the internal friction angle and cohesion of soils on the pullout resistance performance of drilled shafts was found to vary, when the fines content was about 13% based on results direct shear test and pullout test. Therefore, at design of drilled shafts, the effect of skin friction resistance should be considered on the influence factor of strength parameters ($c-{\phi}$) according to the fines content of soil.