• Title/Summary/Keyword: 상대동탄성계수

Search Result 44, Processing Time 0.031 seconds

Properties on the Freeze-Thaw of Concrete Subjected to Seawater Attack (해수의 영향을 받은 콘크리트의 동결융해 특성)

  • Park, Kwang-Pil;Kim, Seong-Soo;Lee, Seung-Tae;Kim, Jong-Pil;Jung, Ho-Seop
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, deterioration degrees of concrete were investigated at laboratory under seawater attack and cycling freeze-thaw, which are major durability performance deterioration factors of concrete. Deteriorations of mixed concrete using Portland & blended cement were examined by instrumental analysis of changes in relative dynamic modulus of elasticity and compressive strength. After 520 cycles of freeze-thaw, relative dynamic modulus of elasticity and compressive strength of concrete mixed with normal Portland and LHC over 75% showed relatively low resistance of approximately 44% of those values of SRC. Concrete replaced with 50% fine powder of blast furnace slag showed the most excellent freeze-thaw resistance among the tested blended cement concrete.

Estimation of Concrete Durability Subjected to Freeze-Thaw Based on Artificial Neural Network (인공신경망 기반 동결융해 작용을 받는 콘크리트의 내구성능 평가)

  • Khaliunaa Darkhanbat;Inwook Heo;Seung-Ho Choi;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.144-151
    • /
    • 2023
  • In this study, a database was established by collecting experimental results on various concrete mixtures subjected to freeze-thaw cycles, based on which an artificial neural network-based prediction model was developed to estimate durability resistance of concrete. A regression analysis was also conducted to derive an equation for estimating relative dynamic modulus of elasticity subjected to freeze-thaw loads. The error rate and coefficient of determination of the proposed artificial neural network model were approximately 11% and 0.72, respectively, and the regression equation also provided very similar accuracy. Thus, it is considered that the proposed artificial neural network model and regression equation can be used for estimating relative dynamic modulus of elasticity for various concrete mixtures subjected to freeze-thaw loads.

Freeze-Thaw Resistance of Alkali Activated Ternary Blended Cement Incorporated with Ferronickel Slag (알칼리 활성화제를 첨가한 페로니켈슬래그 혼입 삼성분계 콘크리트의 동결융해 저항성)

  • Cho, Won-Jung;Park, Kwang-Pil;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.159-167
    • /
    • 2022
  • The present study assessed the micro structure and durability characteristics of ternary blended cement with different types of alkali activators. Ground granulated blast furnace slag(GGBS) and ferronickel slag(FNS) was replaced until 50 % of the weight of cement. In addition, potassuim hydroxide and sodium hydroxide were used for comparing the properties of different type of alkali activator. Ternary blended cement with alkali activators showed higher peak portlandite peak than that of OPC(Ordinary Portlande Cement) and non activated ternary blended cement. Also, there was no new hydration products in ternary blended cement or/and alkali activators. Based on the mercury intrustion porosimetry(MIP) test result, ternary blended cement increased macro pore while alkali activated ternary blended cement modified pore structure and increased microp pore as compared to OPC as control. Combination with alkali activators is desirable to enhance the compressive strength and freeze thaw resistance.

Evaluation of Concrete Freeze and Thaw Resistance by Measuring Surface Rebound Value and Relative Dynamic Modulus of Elasticity (반발경도와 상대동탄성계수 측정에 의한 콘크리트 동결융해 성능평가 비교연구)

  • Park, Ji-Sun;Ahan, Ki-Hong;You, Young-Jun;Lee, Jong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.419-424
    • /
    • 2021
  • This study investigated the possibility of early determination of frost damage on the concrete surface by using the rebound hardness method, widely used for estimation the compressive strength of concrete on the site. For this purpose, the surface damage of concrete was compared by measuring the rebound hardness and the relative dynamic modulus of the concrete for the multi-sided and single sided concrete surface exposed to freeze and thaw condition. Compared to the resonance vibration method, the rebound hardness method was able to show the frost damage 150 cycles quicker for the single-sided exposed concrete specimen and 50 cycles quicker for the multi-sided exposed concrete specimen. Therefore, it is considered that the rebound hardness method can determine the concrete surface damage more quickly than that of the resonance vibration method.

Freezing-Thawing Phenomenon and Durability-Improving Method of Plain Concrete Exposed to Outdoor in Winter Season (동절기 옥외 노출 콘크리트의 동결융해 현상과 내구성 증진방안)

  • Lee, Sang Hyun;Kim, Jung Jin;Sung, Cheon Woo
    • Magazine of the Korea Institute for Structural Maintenance and Inspection
    • /
    • v.18 no.4
    • /
    • pp.2-8
    • /
    • 2014
  • 본 고는 동절기 이후 무근 콘크리트의 상부에서 쉽게 발생하는 스케일링 현상에 주목하여 무근 콘크리트의 동해 발생원인을 고찰하고, 이에 대한 내구성을 향상시키기 위한 방안을 기존문헌조사를 통하여 1) 강도향상, 2) 진공배수공법 적용, 3) 흡수방지재 시공의 방법을 선정하였다. 그 후 각 방법의 동결융해저항성 향상 평가를 정량적으로 평가하기위하여 동결융해 시험을 통한 상대동탄성계수를 측정하였다. 그 결과 1), 2)번의 경우 동탄성계수가 약 15% 향상, 3)의 경우 강도에 따라 7~13%향상됨을 실험적으로 확인하였다. 따라서 상기의 방법 모두 무근 콘크리트의 동결융해 저항성 향상에 유효한 방법으로 판단되며, 이를 통해 무근콘크리트의 빈번히 발생하는 품질저하 및 이로인한 유지보수비용 절감을 도모할 수 있을 것으로 사료된다.

  • PDF

Evaluation of Material Properties of Fire-damaged Concrete Under Post-fire Curing Regimes Using Impact Resonance Vibration Method (충격 공진 기법을 이용한 화재 손상 콘크리트의 재양생 조건별 재료물성 평가)

  • Park, Sun-Jong;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.42-48
    • /
    • 2017
  • When concrete structures expose to fire, the structures were damaged accompanied with degradation of material properties of concrete. In order to determine the reuse of fire-damaged concrete structures, it is needed a careful determination considering conditions of fire damage, such as exposure temperature and exposure time, and also potential to restore fire damage. This study investigates on the evaluation of residual material properties of fire-damaged concrete under different post-fire curing regimes. An experimental study was performed on concrete samples to measure the dynamic elastic modulus by the impact resonance vibration method. Upon the experimental results, the evidence of restoration of material properties was confirmed on specific post-fire curing regimes, higher humidity conditions. Additionally, a correlation analysis was performed on the dynamic elastic modulus with the tensile strength for identifying the effects of post-fire curing regimes on both material properties of fire-damaged concrete.

Characteristics of Cyclic Drying-Wetting on Strength of Solidified Soil Mixed Porosity Silica (다공성 실리카를 혼합한 경화토의 건습반복 강도특성)

  • Kim, Donggeun;Bang, Seongtaek;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.29-34
    • /
    • 2014
  • In order to examine strength properties depended on climate changes of solidified soil amended by porosity silica which enhance harms of cement, this study conducts a wetting and drying repetition test and then, attempts to verify strength properties before and after solidified soil gets environmental influence. Test pieces for the unconfined compression test changed the mixing ratio of solidified soil compared to mixed soil weigh to 5 %, 10 % and 15 %. For each step, it was created by mixing 0.5 %, 1.0 % and 1.5 % of wood chips, and curing period for 7, 14, and 28 days. Then, the wetting and drying repetition process was repeated 0, 3, 6, and 12 cycles to analyze mechanical properties. To also evaluate changes of relative dynamic elastic modulus before and after the wetting and drying, dynamic elastic modulus tests were conducted when each cycle was completed.

Flexural Strength and Durability Evaluation by Freezing and Thawing Test of Repaired Reinforced Concrete Beams (보수보강을 실시한 철근콘크리트 보의 동결융해시험을 통한 휨강도 및 내구성 평가)

  • Lee, Chang-Hyun;Eo, Seok-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.455-461
    • /
    • 2018
  • This paper presents experimental investigations about flexural strength and durability of reinforced concrete beams repaired using ductile fiber reinforced cementitious composite (DFRCC) and carbon fiber sheet through freezing and thawing test. Total 14 RC beams of $100{\times}100{\times}400mm$ size were tested by 3-point bending and freezing and thawing test by KS F 2456. The beams were reinforced using 3D10 steels on both the tensile and compressive sides, and repaired on 3 sides expect on top cycle. Test results showed that the beams repaired using fiber carbon sheet revealed about 15% higher values of flexural strength compared than the cases of DFRCC motar. On the other hand, the results did not showed meaningful differences in the aspect of durability. For further research, consideration of the steel interference effect and real old specimens such as taken from real deteriorated structures are needed to be tested after repairing with DFRCC and carbon fiber sheet.

An Experimental Study on the Durability of Recycled Aggregate Concrete (재생골재 콘크리트의 내구특성에 관한 실험적 연구)

  • Seo Chi-Ho;Kim Byung-Yun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.385-392
    • /
    • 2005
  • The object of this study is to prove the quality and reliability of recycled aggregate concrete by finding a way to improve the durability of the material through the experiment on the accelerated carbonation, freezing and thaw, and drying shrinkage, analysing the influence on the durability to Promote more active use of recycled aggregate concrete. The result of study as follows. (1) Resistibility to the freeze and thaw of the recycled aggregate concrete showed relative dynamic modulus of elasticity over $90\%$ which is very good, and all cycles show $99.2{\~}91.0\%$ dynamic modulus of elasticity which is improved compared with the $97.5{\~}90.6\%$ relative dynamic modulus of elasticity of ordinary concrete made of broken stone. (2) Carbonated thickness of the recycled aggregate concrete and the normal concrete was similar or it appeared with the tendency which it diminishes more or less. (3) Length change rate in drying contraction of the recycled aggregate concrete made of the recycled aggregate was lower than the ordinary concrete made of the broken stone by $18.5{\~}3.9\%$ in all blending.

Freeze-thaw Resistance Estimation of Concrete using Surface Roughness and Image Analysis (콘크리트의 동결융해 저항성 추정을 위한 표면 거칠기 및 이미지 분석의 적용성)

  • Lee, Binna;Lee, Jong Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • As part of a research dedicated to the field evaluation of the durability of concrete subjected to freezing-thawing, this study analyzes the relationship between the surface roughness and the relative dynamic elastic modulus through image analysis. Four mix compositions with water-to-binder ratios (W/B) of 40%, 50%, 60% and 70% and without AE agent were considered to provoke early freezing. The basic physical properties of the mixes including the relative dynamic elastic modulus and the compressive strength were first evaluated experimentally according to W/B. Then, tests were performed to measure the surface roughness followed by photographs and SEM image analysis. The measured surface roughness tended to increase with larger number of freezing-thawing cycles regardless of W/B. The relative dynamic elastic modulus appeared to increase gradually with the number of cycles for the relatively denser mixes with W/B of 40% and 50%. Besides, the surface roughness increased only at rupture for the mixes with W/B of 60% and 70%. Moreover, the analysis of the photographs of the surface of the mixes with W/B of 40% and 50% revealed that the degradation progressed gradually from the surface with the freezing-thawing cycles. However, for the mixes with W/B of 60% and 70%, apparent change of the surface remained very insignificant until rupture at which damage like cracking could be observed. Consequently, the analysis of surface photograph or the measurement of the surface roughness presented some limitation in assessing the degree of freezing-thawing-induced degradation in case of relatively porous specimens. On the other hand, the photograph and surface roughness appeared to be sufficient for assessing such degradation for the mixes with W/B of 40% and 50%. Accordingly, the image of the surface and the surface roughness are potentially applicable on site for the assessment of freezing-thawing damages in relatively dense mixes.