• Title/Summary/Keyword: 상단고정체

Search Result 27, Processing Time 0.017 seconds

Three-dimensional finite element analysis according to the insertion depth of an immediately loaded implant in the anterior maxilla (상악 전치부 즉시하중 임플란트의 식립 깊이에 따른 삼차원 유한요소 분석)

  • Park, Cheol-Woo;Kim, Sung-Hun;Yeo, In-Sung;Yoon, Hyung-In;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the effects of the insertion depth of an immediately loaded implant on the stress distribution of the surrounding bone and the micromovement of the implant using the three-dimensional finite element analysis. Materials and methods: A total of five bone models were constructed such that the implant platform was positioned at the levels of 0.00 mm, 0.25 mm, 0.50 mm, 0.75 mm, and 1.00 mm depth from the crest of the cortical bone. A frictional coefficient of 0.3 and the insertion torque of 35 Ncm were simulated on the interface between the implant and surrounding bone. A static load of 178 N was applied to the provisional prosthesis with a vertical load in the axial direction and an oblique load at $30^{\circ}$ with respect to the central axis of the implant, then a finite element analysis was performed. Results: The implant insertion depth significantly affected the stress distribution on the surrounding bone. The largest micromovement value of the implant was $39.34{\mu}m$. The oblique load contributed significantly to the stress distribution and micromovement in comparison to the vertical load. Conclusion: Increasing the implant insertion depth was advantageous in dispersing the concentrated stress in the cortical bone and did not significantly affect the micromovement associated with early osseointegration failure.

Growth and characterization of CdTe single crystals by vertical Bridgman method (수직 Bridgman법에 의한 CdTe 단결정의 성장과 특성)

  • 정용길;신호덕;엄영호;박효열;진광수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.220-228
    • /
    • 1996
  • CdTe single crystals were grown by vertical Bridgman method using double furnace with two siliconit heating elements. When the peak temperature of the upper furnace was fixed at $1150^{\circ}C$ and that of the lower furnace was $800^{\circ}C$, the temperature gradient was about $22.5^{\circ}C$/cm. The lattice constant $a_0$ was $6.482\AA$ from the X-ray diffraction and the band gap energy obtained from the optical absorption experiment at room temperature was 1.478 eV. PL spectrum showed that the bound exciton emission peak was resolved into ($A^0,X$) (1.5902, 1.5887 eV), ($h\;D^0$) (1.5918 eV) and ($D^0,X$ (1.5928, 1.5932 eV), and we have also calculated binding energy and ionization energy of the neutral donor and acceptor.

  • PDF

Development of sequential sampling plan for Frankliniella occidentalis in greenhouse pepper (고추 온실에서 꽃노랑총채벌레의 축차표본조사법 개발)

  • SoEun Eom;Taechul Park;Kimoon Son;Jung-Joon Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.164-171
    • /
    • 2022
  • Frankliniella occidentalis is an invasive pest insect, which affects over 500 different species of host plants and transmits viruses (tomato spotted wilt virus; TSWV). Despite their efficiency in controling insect pests, pesticides are limited by residence, cost and environmental burden. Therefore, a fixed-precision level sampling plan was developed. The sampling method for F. occidentalis adults in pepper greenhouses consists of spatial distribution analysis, sampling stop line, and control decision making. For sampling, the plant was divided into the upper part(180 cm above ground), middle part (120-160 cm above ground), and lower part (70-110 cm above ground). Through ANCOVA, the P values of intercept and slope were estimated to be 0.94 and 0.87, respectively, which meant there were no significant differences between values of all the levels of the pepper plant. In spatial distribution analysis, the coefficients were derived from Taylor's power law (TPL) at pooling data of each level in the plant, based on the 3-flowers sampling unit. F. occidentalis adults showed aggregated distribution in greenhouse peppers. TPL coefficients were used to develop a fixed-precision sampling stop line. For control decision making, the pre-referred action thresholds were set at 3 and 18. With two action thresholds, Nmax values were calculated at 97 and 1149, respectively. Using the Resampling Validation for Sampling Program (RVSP) and the results gained from the greenhouses, the simulated validation of our sampling method showed a reasonable level of precision.

Study on the Measurement System of Behavior of a Slender Structure using an Underwater Camera which is applied in DOEB (심해공학수조에 적용되는 수중카메라를 이용한 세장체의 연속 거동 측정방법에 관한 연구)

  • Jung, Dong-Ho;Kwon, Yong-Ju;Park, Byeong-Won;Jung, Jae-Hwan;Choi, Jong-Su;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This study covers the selection of systems measuring the behaviour of the slender structure in the underwater environment and its performance assessment. From a comparison of an instrumentation system that can measure the continuous behaviour along the entire length of the slender structure, the underwater camera system is finally selected as the most appropriate semi-permanent measurement system for Deep-sea Ocean Engineering Basin of KRISO. An experiment on the rigid pipes for a basic performance evaluation of the underwater camera is conducted in this study. The motion of a top excited rigid pipe is measured with the utilization of the underwater camera system. The performance of the underwater camera is evaluated by comparing the movement of a pipe measured by the underwater camera with the measured input signals. Through the top excitation experiment for the slender structure, the real-time three-dimensional measurement of the underwater camera system is qualitatively evaluated in this case. The developed underwater camera system can apply to the system to measure dynamic behaviour of a slender structure and mooring line in Deep Ocean Engineering Basin.

Stress distribution of implants with external and internal connection design: a 3-D finite element analysis (내측 연결 및 외측 연결 방식으로 설계된 임플란트의 3차원적 유한요소 응력 분석)

  • Chung, Hyunju;Yang, Sung-Pyo;Park, Jae-Ho;Park, Chan;Shin, Jin-Ho;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.189-198
    • /
    • 2017
  • Purpose: This study aims to analyze the stress distribution of mandibular molar restoration supported by the implants with external hex and internal taper abutment connection design. Materials and Methods: Models of external connection (EXHEX) and internal connection (INCON) implants, corresponding abutment/crowns, and screws were developed. Supporting edentulous mandibular bony structures were designed. All the components were assembled and a finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. A total of 120 N static force was applied both by axial (L1) and oblique (L2) direction. Results: Peak von Mises stresses produced in the implants by L2 load produced 6 - 15 times greater than those by L1 load. The INCON model showed 2.2 times greater total amount of crown cusp deflection than the EXHEX model. Fastening screw in EXHEX model and upside margin of implant fixture in INCON model generated the peak von Mises stresses by oblique occlusal force. EXHEX model and INCON model showed the similar opening gap between abutment and fixture, but intimate sealing inside the contact interface was maintained in INCON model. Conclusion: Oblique force produced grater magnitudes of deflection and stress than those by axial force. The maximum stress area at the implant was different between the INCON and EXHEX models.

Compressive Behavior of Precast Concrete Column with Hollow Corresponding to Hollow Ratio (중공비율에 따른 중공 프리캐스트 철근콘크리트 기둥의 압축거동)

  • Lee, Seung-Jun;Seo, Soo-Yeon;Pei, Wenlong;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.441-448
    • /
    • 2014
  • From several researches, recently, it was found that using hollowed precast concrete (HPC) column made more compact concrete casting in joint region possible than using normal solid PC (Precast concrete) column. Therefore, the rigidity of joints can be improved like those of monolithic reinforced concrete (RC). After filling the hollow with grout concrete, however, it is expected that the HPC column behaviors like composite structure since PC element and grout concrete have different materials as well as there is a contact surface between two elements. These may affect the structural behavior and strength of the composite column. A compressive strength test was performed for the HPC column with parameter of hollow ratio for the case with and without grout in the hollow and the result is presented in this paper. The hollow ratios in the test are 35, 50 and 59% of whole section of column. Concentrated axial force was applied to top of the specimens supported as pin connection for both ends. In addition, finite element (FE) analysis was performed to simulate the failure behavior of HPC column for axial compression. As a result, it was found that the hollow ratio did not affect the initial stiffness of HPC filled with grout regardless of the strength difference of HPC and grout. However the strength was increased inversely corresponding to the hollow ratio. The structural capacity of HPC without grout closely related to the hollow size. Especially, the local collapse governs the overall failure when the thickness of HPC is too thin. Based on these effect, a suitable equation was suggested for calculation of the compressive strength of HPC column with or without grout. FE analysis considering the contact surface between HPC and grout produced a good result matched to the test result.

Source Term Characterization for Structural Components in $17{\times}17$ KOFA Spent Fuel Assembly ($17{\times}17$ KOFA 사용후핵연료집합체내 구조재의 방사선원항 특성 분석)

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Heui-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 2010
  • Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core with different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be $1.40{\times}10^{15}$ Bequerels, 236 Watts, $4.34{\times}10^9m^3$-water, respectively, at 10 years after discharge. Those values correspond to 0.7 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 20~45 % and 30~45 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important.