소상공인 창업자들이 자금조달의 대부분을 은행 대출에 의존하고 있는 가운데 소규모 자금 조달을 필요로 하는 이들을 위해 핀테크 기반의 새로운 금융서비스를 통해 소상공인 창업자의 금융 공급을 확산할 필요가 있다. 이러한 환경 변화 패러다임에서 본 연구는 빅데이터와 핀테크 솔루션의 활용이 소상공인의 매출과 금융지원에 미치는 영향을 살펴보기 위해 실제로 공공과 민간의 상권빅데이터자료를 수집하여 분석을 수행하였다. 이를 통해 소상공인에 대한 금융혜택 증대를 위한 사업장의 매출증대 등 소상공인 창업자의 사업성 평가에 필요한 주요변수들을 상권빅데이터를 실증적으로 분석하여 효과성을 검증하는 것이 본 연구의 목적이다. 특히 자금의 대부분을 정책자금을 통해 조달하는 소상공인들이 일반 은행에서도 중소기업 대출의 하나로 비중 있게 이루어질 수 있도록 기존에 활용되지 못한 빅데이터 변수들을 탐색하여 소상공인의 경쟁력 향상을 위한 효율적인 금융지원이 가능함을 확인하고자 하였다. 본 연구에서는 소상공인 창업자의 대출 등 금융지원 확대를 위한 사업성 평가에 상권빅데이터의 활용 가능성이 있는지를 중심으로 문헌적 연구방법 연구와 실증적 분석을 병행하였다. 본 연구는 핀테크와 빅데이터의 활용이 향후 소상공인 자금 조달의 발전 방향이 어떻게 되어야하는지를 모색해야하며, 소상공인을 포함하는 중소기업 신용평가방식의 발전 방향을 구체적으로 모색되어야 할 시점임을 의미하고 있다.
The proportion of micro-enterprises and self-employed in Korea is excessively high compared to that of major developed countries, and frequent start-ups and business closures are repeated, causing enormous damage to the national economy. In order to solve this problem, various studies are underway for micro-enterprises, and the government provides commercial district information analysis services using big data for micro-enterprises. Among the commercial district information analysis services, the commercial district information analysis of our village store operated by the Seoul Metropolitan Government is continuously improving its service to provide the big data analysis service related to micro-enterprises. Since the service was built by integrating big data provided by various organizations, however, there are limitations in data reliability, data analysis, and service composition. In order to overcome these limitations, this paper proposes a location-based survey system that can be analyzed in conjunction with big data-based commercial district services. The proposed questionnaire survey system established the basis for expending the big data commercial district analysis service by linking the survey information and commercial district information.
본 논문에서는 소상공인의 창업 성공을 지원하는 점포 평가 분석 사례를 소개하여 기업의 빅데이터 도입 및 활용을 촉진하고자 한다. 본 사례에서는 카드사 거래 정보, 가맹점 정보, 부동산 가격 정보, 부동산 통계 정보, 감정평가 정보, 조사업무관련 정보 및 인허가 개폐업 정보를 활용해 36만개의 GIS 블록과 GEO 컨텐츠를 생산하여 빅데이터 분석을 실시하였다. 체계적인 분석을 위해 상권 평가 지수, 업종 평가 지수, 입지 평가 지수, 임대료 추정, 매출 추정, 적정면적 추정 등의 상권, 업종, 입지에 대한 지표를 개발하였다. 이를 통해 상가와 상권에 대한 분석 자료를 제공하여 과밀창업의 예방과 신중한 창업의 유도를 통해 창업실패로 유발 될 수 있는 경제적 비용의 감소 효과를 이룰 것으로 판단된다.
In Korea, micro-enterprises are in charge of an important part of the common people's economy, but face difficulties such as excessive competition, deteriorating profitability, and concentration of life-oriented industries. In order to solve this problem, the government is providing commercial district analysis services for micro-enterprises. However, the data provided by various organizations is not standardized, and there is a limit to the composition of the service with limited data. In this paper, we propose a method of solving the data consistency problem and linking and analyzing between questionnaire information and commercial district information to expand the data analysis service. The proposed linking methods are three methods: linking the commercial area information and questionnaire information in the same area based on the type of business and area, linking the survey information centered on individual micro-enterprise, and linking a small area of questionnaire information with a large area of commercial district information. The linked commercial district information and questionnaire information can be used in various ways or expanded analysis services. This proposed a method to overcome the limitations of existing commercial district analysis services with questionnaire information and lay the foundation for expanding the commercial district analysis services necessary for micro-enterprises.
Emerging hotspot and trendy areas are formed into alleys and blocks with the help of viral effects among social network services (SNS) users called "Golmogleo." These users search for every corner of the alleys to share and promote their own favorite places through SNS. An analysis of hot places is limited if it is only based on macroeconomic indicators such as commercial area data published by national organizations, large-scale visiting facilities, and commuter figures. Careful analyses based on consumers' actual activities are needed. This study develops a "social big data analysis methodology" using Instagram data, which is one of the most popular SNSs suitable to identify recent consumer trends. We build a spatial analysis model using Local Moran's I. Results show that our model identifies new trend zones on the basis of posting data in Instagram, which are not included in the commercial information prepared by national organizations. The proposed analysis methodology enables better identification of the latest trend areas formulated by SNS user activities. It also provides practical information for start-ups, small business owners, and alley merchants for marketing purposes. This analytical methodology can be applied to future studies on social big data analysis.
Journal of the Korean Regional Science Association
/
v.39
no.1
/
pp.3-20
/
2023
This study aims to categorize the 14 major gentrified commercial areas of Seoul and analyze their characteristics based on their sense of place. To achieve this, we conducted hierarchical cluster analysis using text data collected from Naver Blog. We divided the districts into two dimensions: "experience" and "feature" and analyzed their characteristics using LDA (Latent Dirichlet Allocation) of the text data and statistical data collected from Seoul Open Data Square. As a result, we classified the commercial districts of Seoul into 5 categories: 'theater district,' 'traditional cultural district,' 'female-beauty district,' 'exclusive restaurant and medical district,' and 'trend-leading district.' The findings of this study are expected to provide valuable insights for policy-makers to develop more efficient and suitable commercial policies.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.13
no.3
/
pp.125-140
/
2018
According to statistics, it is shown that domestic SMEs rely on bank loans for the majority of fund procurement. From financial information shortage (Thin file) that does not provide information necessary for credit evaluation from banks such as financial statements. In order to overcome these problems, recently, in alternative finance such as P2P, using differentiated information such as demographics, trading information and the like utilizing Fintech instead of existing financial information, small funds A new credit evaluation method has been expanding to provide SMEs with small amounts of money. In this paradigm of environmental change, in this research, credit evaluation which can expand fund supply to SMEs by utilizing big data based on trade area information such as sales fluctuation, location conditions etc. In this research, we try to find such a solution. By analyzing empirically the big data generated in the trade area, we verify the effectiveness as a credit evaluation factor and try to derive the main parameters necessary for the business performance evaluation of the founder of SMEs. In this research, for 17,116 material businesses in Seoul City that operate the service industry from 2009 to February 2018, we collect trade area information generated for each business location from Big Data specialized company NICE Zini Data Co., Ltd.. We collected and analyzed the data on the locations and commercial areas of the facilities that were difficult to obtain from SMEs and analyzed the data that affected the Corporate financial Distress. It is possible to refer to the variable of the existing unused big data and to confirm the possibility of utilizing it for efficient financial support for SMEs, This is to ensure that commercial lenders, even in general commercial banks, are made to be more prominent in one sector of the financing of SMEs. In this research, it is not the traditional financial information about raising fund of SMEs who have basically the problem of information asymmetry, but a trade area analysis variable is derived, and this variable is evaluated by credit evaluation There is differentiation of research in that it verified through analysis of big data from Trading-area whether or not there is an effect on.
Proceedings of the Korea Contents Association Conference
/
2016.05a
/
pp.269-270
/
2016
빅데이터 분석을 통한 여러 산업 군과 융합으로 시너지를 발생시키기 위해서, 다양한 유형의 데이터 수집을 통해 빅데이터를 구성하는 것이 첫 번째 단계이며 기상, 교통, 인터넷 활동, 상권 등의 다양한 출처로부터 데이터 연계를 수행하고 사물인터넷과 같은 실시간으로 발생하는 로그 성 데이터 수집을 고려한 실시간 처리 시스템을 설계 하였다. 이를 통해 서로 다른 유형의 데이터가 빅데이터로 수집 되면 여러 산업 군에서 요구되는 인사이트 기반의 빅데이터 분석을 통해 B2B 또는 B2C 서비스에 응용 될 수 있다.
Kim, Jong-won;Park, Yoon-bo;Ryu, Jo-mi;Shin, Ju-beom;Park, Dae-gi
Annual Conference of KIPS
/
2017.11a
/
pp.652-654
/
2017
본 프로젝트의 목적은 소상공인들을 위한 상권 분석, 트렌드 분석, 창업 지원 정책 소개, 커뮤니티 등을 제공하는 빅 데이터 기반의 웹 서비스를 구축하는 것이다. 일반적인 창업 관련 사이트는 정형데이터를 DB(Data Base)에 저장 후 관리되는 시스템으로, 이는 사용자 개개인에 맞는 맞춤형 정보를 제공하기 힘들다. 따라서 본 논문에서는 실시간 검색어 수집 및 분석을 통해 소상공인들이 창업을 희망할 때, 사용자에 맞는 정보를 제공해주는 맞춤형 서비스 연구에 대한 내용이다.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.6
/
pp.784-792
/
2018
In this study, we designed the area except the development market and the traditional market, where large scale shops were concentrated by realizing the real estate center of the alley commercial area. In addition, we have developed an area setting method for the alley area where reliability and rationality can be ensured by utilizing the actual data such as the business statistics, the survey data of the business, and the store business DB, which are managed by the local government or the state. The alley commercial areas were classified into five groups according to density. It is thought that users can distinguish the commercial areas from dense commercial areas to the commercial areas in order to utilize various commercial areas.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.