• Title/Summary/Keyword: 삼차원 수치계산

Search Result 22, Processing Time 0.03 seconds

Wind-Driven Circulation Using a Curvilinear Hydrodynamic Three-Dimensional Model (곡선형격자 삼차원 수치모형을 이용한 바람에 의한 물의 순환)

  • Lee, Hye-Keun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1994
  • A curvilinear hydrodynamic three-dimensional model is presented for the study of wind-driven circulation in a shallow lake. Numerical results are compared with field data. Thermal stratification effects were found to be critical to the successful simulation of circulation under increasing winds. When there ate insufficient meteorological data, the so-called inverse method can be used for the estimation of heat flux.

  • PDF

A Numerical Investigation on the Isentropic Efficiency of Steam Turbine Nozzle Stage with Different Nozzle Vane Thickness and Mass Flow Rate (증기 터빈 노즐 베인의 두께 변화와 유량별 등엔트로피 효율 변화에 관한 수치해석)

  • Lee, Jong Hyeon;Park, Hee Sung;Jung, Jong Yun;Kim, Joon Seob;Jung, Ye Lim;Park, Sung Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.685-691
    • /
    • 2017
  • In this study, the influence of mass flow rate on the isentropic efficiency of the steam turbine nozzle stage is investigated. A realistic three-dimensional numerical model, which is based on the compressible Navier-Stokes equations, is developed for the steam phase. The comprehensive conservation laws and a kinetic model for steam are investigated. With two different models for the three-dimensional geometry of the nozzle stage, the pressure and temperature distributions, velocity, Mach number. and Markov energy loss coefficient are calculated. A maximum efficiency of 96.66% is found at a mass flow rate of 0.9 kg/s in model A. In model B, a maximum efficiency of 97.32% is found at a rate of 1.6 kg/s. It is determined that the isentropic nozzle efficiency increases as the Markov energy loss coefficient decreases through a nearly linear relationship.

The comparison between Numerical Computation and Experiment on Fluid Elow in Rectangular Duct (사각덕트내의 유체유동에 관한 수치계산과 실험의 비교)

  • Yoon Young-Hwan;Bae Taeg-Hee;Park Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.71-74
    • /
    • 2002
  • Fluid flow in a rectangular duct system are measured by W laser doppler velocity meter, and also computed by commercial software of STAR-CD for comparison between then First, for a rectangular duct with 90 degree metered elbow, the fluid flow with Reynolds numbs's of 1,508 is predicted by assumption of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300-3,000, the computation by turbulent model is close to the experimental data. Moeover, the computation by turbulent model for Reynolds number of 11,751 also predicts the experimental data satisfactorily. Second, for a rectangular duct with two branch ducts, the ratios between flow rates in the two branches are invariant to Reynolds number according to both of numerical and experimental results.

  • PDF

Experimental and Computational Studies for Flow Distribution In a Rectangular Duct System with Two Branches (두 개의 분지관을 가진 직사각형 덕트 내의 유량배분에 관한 실험 및 수치계산 연구)

  • 윤영환;배택희;박원구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.766-773
    • /
    • 2002
  • Flow distributions in a rectangular duct with two branch ducts are measured by 5 W laser doppler velocity meter. The fluid flows are also computed by commercial soft-ware of STAR-CD for comparison between them. The Reynolds numbers in the main duct are from 4,226 to 17,491. The ratios distributed into two branches from the main duct are in-variant to Reynolds numbers according to both of numerical and experimental results. However computed velocity profiles at exit of each branch are somewhat different from measured profiles at the same location.

Study on Velocity Measurement and Numerical Computation in a Rectangular Duct with $90^\circ$ Bend Elbow (곡면 엘보우를 가진 사각덕트 내의 유속측정 및 수치계산에 관한 연구)

  • 윤영환;박원구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.910-917
    • /
    • 2003
  • Fluid flow in a rectangular duct for 90$^{\circ}$ bend elbow with the ratio of 1.5 between its curvature radius and width is measured by 5 W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between measured and computed velocity profiles in the duct. Reynolds numbers for the comparison are 11,643, 19,746 and 24,260. From the comparison, computation of principal velocity components in the duct predicts the experimental data somewhat satisfactorily even though those of minor velocity components and turbulent kinetic energy do not match with the experimental data quite well. K-factor for the bend elbow is computed to be average 0.086 while the equivalent ASHRAE data is 0.07.

Computational Efficiency of 3-D Contact Analysis by Domain/Boundary Decomposition Formulation (영역/경계 분할 정식화에 의한 삼차원 접촉 해석의 효율성 검토)

  • Kim, Yong-Uhn;Ryu, Han-Yeol;Shin, Eui-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.469-476
    • /
    • 2007
  • A domain/boundary decomposition technique is applied to carry out efficient finite element analyses of 3-D contact problems. Appropriate penalty functions are selected for connecting an interface and contact interfaces with neighboring subdomains that satisfy continuity constraints. As a consequence, all the effective stiffness matrices have positive definiteness, and computational efficiency can be improved to a considerable degree. If necessary, any complex-shaped 3-D domain can be divided into several simple-shaped subdomains without considering the conformity of meshes along the interface. With a set of numerical examples, the basic characteristics of computational efficiency are investigated carefully.

Geometry Design of Coal Gasifier Refractory using Computational Fluid Dynamics (전산유체역학기법에 의한 석탄가스화기 내화재 형상 설계)

  • 이진욱;박병수;윤용승;안달홍
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.15-20
    • /
    • 1998
  • 전산유체역학 기법을 이용하여 석탄가스화기 내화재내에서의 온도분포 해석 및 열손실량 계산을 수행하였다. 일차원 이론적 해석, 이차원 전도열전달 해석 및 삼차원 대류-전도 복합열전달 해석 등 세 가지 방법론으로 전산해석을 수행하고 그 결과들을 서로 비교하였으며, 또한 해석결과들을 석탄가스화기 실험결과와 비교하였다. 결과의 정확성, 수치해석상의 편리성(수렴성 및 계산시간) 등을 종합적으로 검토하여, 이차원 전도열전달 해석이 공학적 설계에 적용하기 적절한 방법론임을 제시하였다. 전산해석 결과를 3톤/일급 석탄가스화기에 적용해 본 결과, 총 열손실량은 설계치 운전기준으로 약 1% 정도인 것으로 판별되었다.

  • PDF

A Rheological Analysis on the Semiconcentrated Fiber Suspensions Including Fiber-fiber Interactions (섬유간 상호작용을 고려한 진한 섬유현탁액에 대한 유변학적 해석)

  • 이성재
    • The Korean Journal of Rheology
    • /
    • v.8 no.1
    • /
    • pp.49-57
    • /
    • 1996
  • 단섬유 강화복합재료의 가공공정에 있어서 유동 중에 일어나는 섬유 배향상태를 정 확히 예측하고 제어하는 일은 대단히 중요하다. 본 연구에서는 섬유현탁액의 거동을 살펴보 기 위하여 뉴톤유체를 매질로하는 섬유현탁액을 대상으로 하여 유변학적 해석을 하였다. 이 를 위해 섬유간 상호계수는 섬유배향상태의 함수의 섬유간 평균거리를 이용하여 계산하였는 데, 섬유간 평균거리는 변형된 Doi-Edwards의 방법을 이용하였다. 축대칭 압출팽창 문제를 예로 수치모사를 하여 본 저자들이 앞서 행한 결과와 비교하였다. 유동장을 축대칭 이차원 으로 하고 섬유배향을 삼차원 모두 고려하여 구한 수치모사의 결과는 실험과 잘 일치하였 다. 진한 섬유현탁액의 경우 섬유간 상호계수는 중요한 인자로서 이것을 섬유 배향상태에 의존하는데 이섬유간 상호계수를 섬유간 거리와 섬유배향상태의 함수로 나타내는 방법을 사 용하여 보다 실제적인 해석을 할수 있었다.

  • PDF

Analysis of Electromagnetic Scattering from 3-Dimensional Dielectric Objects applying Muller Integral Equation (뮬러 적분방정식을 이용한 삼차원 유전체의 전자기 산란 해석)

  • Park Jae-Kwon;Kim Hyung-Jin;An Chong-Chul;Jung Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.961-968
    • /
    • 2004
  • In this paper, we present a set of numerical schemes to solve the Muller integral equation for the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional dielectric bodies by applying the method of moments(Mon. The piecewise homogeneous dielectric structure is approximated by planar triangular patches. A set of the RWG(Rao, Wilton, Glisson) functions is used for expansion of the equivalent electric and magnetic current densities and a combination of the RWG function and its orthogonal component is used for testing. Numerical results for a dielectric sphere are presented and compared with solutions obtained using other formulations.

Study on Fluid Flow in Rectangular Duct past $90^{\circ}$ Mitered Elbow (사각덕트내 직각엘보우를 지난 유체유동에 관한 연구)

  • 윤영환;배택희;박원구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.670-678
    • /
    • 2002
  • Fluid flow in a rectangular duct with $90^{\circ}$ mitered elbow is measured by 5W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between measured and computed velocity profiles in the duct. Reynolds numbers for the comparison are 1,608 and 11,751 based on mean velocity and hydraulic diameter of the duct. First, the fluid flow of Reynolds number equal to 1,608 is predicted by assumptions of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300~3,000, the computation by turbulent model is closed to the experimental data than that by laminar model. Second, the computation for Reynolds number of 11,751 by turbulent model also predicted the experimental data satisfactorily.