• Title/Summary/Keyword: 살포 농도

Search Result 429, Processing Time 0.032 seconds

Residue Levels of Pesticides in Post-Harvest Treated Import Fruits During Storage (수입 과일에 살포된 수확 후 처리농약(Post-harvest pesticide)의 경시적 변화)

  • Hwang, Lae-Hwong;Cho, Tae-Hee;Cho, In-Soon;Eom, Jeung-Hoon;Choe, Bu-Chuhl;Park, Young-Hye;Kim, Hyun-Jeong;Kim, Jung-Hun
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.245-250
    • /
    • 2010
  • The post-harvest concentration change of four kind of pesticides, captan, chlorpyrifos, methidathion and kresoxim-methyl was investigated with the storage period for the import fruit. Then the post-harvest concentration was set to 1000, 250, 400 and 157 $mgkg^{-1}$ for captan, chlorpyrifos, methidathion and kresoxim-methyl respectively. In case of captan, 0.9-12.5 $mgkg^{-1}$ in total fruit base and ND-0.23 $mgkg^{-1}$ in the sarcocarp were measured after atomization and 0.7-3.2 $mgkg^{-1}$ in total fruit base and ND-0.67 $mgkg^{-1}$ in the sarcocarp were measured after four week. For chlopyrifos, menthidathion, and kresoxim-methyl 0.4-2.2, 0.7-3.1 and 1.3-2.1 $mgkg^{-1}$ in total fruit base and ND-0.32, ND-0.05 and ND-0.16 $mgkg^{-1}$ in the sarcocarp were measured after atomization respectively. After four week 0.3-0.9, 0.4-2.0 and 1.3-1.8 $mgkg^{-1}$ in total fruit base and ND-0.02, ND-0.05 and ND-0.15 $mgkg^{-1}$ in the sarcocarp were investigated for other three pesticides. The concentration decreasing ratio of pesticides was largest for captan, 52% and other components were in order of chlopyrifos, menthidathion, and kresoxim-methy, 47, 41, 11% each other.

Residual Characteristics of Bistrifluron and Chlorantraniliprole in Strawberry (Fragaria ananassa Duch.) for Establishing Pre-Harvest Residue Limit (생산단계 잔류허용기준 설정을 위한 딸기 중 bistrifluron과 chlorantraniliprole의 잔류 특성 연구)

  • Lee, Jae Won;Kim, Ji Yoon;Kim, Hee gon;Hur, Kyung Jin;Kwon, Chan Hyeok;Hur, Jang Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • BACKGROUND: Pesticide residue analysis is essentially required for safety evaluation of agricultural products. Bistrifluron and chlorantraniliprole have been currently considered as potentials to deeply evaluate their residues in agricultural products because they are frequently found in strawberry. This work was performed to investigate the residual patterns of bistrifluron and chlorantraniliprole in strawberry after harvest. METHODS AND RESULTS: Strawberry was treated with bistrifluron and chlorantraniliprole 0, 1, 2, 3, 5, 7 and 10 days before harvest under greenhouse conditions. The strawberry samples were subjected to solvent and solid phase extractions followed by LC-MS/MS analysis. There covery percentages of bistrifluron and chlorantraniliprole for tified in the control samples ranged from approximately 82 to 103% with the method limit of 0.005 mg/kg. The concentrations of bistrifluron and chlorantraniliprole in strawberry samples decreased significantly in 10 days after treatment, giving the safety levels of 0.04 to 0.06 mg/kg at 10 days after application, as considered maximum residue limit. The half-lives of bistrifluron and chlorantraniliprole based on first order kinetics were determined to 6.3 days and 6.4 days, respectively. CONCLUSION: Bistrifluron and chlorantraniliprole are suggested to use in strawberry 10 days before harvest to reach residual safety levels.

Characteristics of Pesticide Runoff and Persistence on Agricultural Watersheds in Korea (영농지역에서 작물재배 형태에 따른 농약의 잔류성과 유출특성)

  • Park, Byung-Jun;Kwon, Oh-Kyung;Kim, Jin-Kyoung;Kim, Jin-Bea;Kim, Jin-Ho;Yoon, Soon-Kang;Shim, Jae-Han;Hong, Moo-Gi
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.194-201
    • /
    • 2009
  • To evaluate the exposure of non-point source pesticide pollution in agricultural watershed and to investigate pesticide distribution and runoff from agricultural land, paddy field, upland and orchard, this experiment was carry out during crop growing seasons. The pesticide were detected twenty pesticides fungicide 4, insecticide 10, herbicide 6) in water of Neungchon agricultural watershed and detection concentrations were range 0.008${\sim}$7.59 ppb. Most of the detection pesticides were using pesticides to rice paddy fields to control fungi, insects, weeds. During the crop cultivation, the pesticide were detected total thirty pesticides by pepper field soil 6, orchard soil 4, sesame field soil 3 and rice paddy field soil 5, and pesticide concentrations were range 0.001${\sim}$0.109 ppm. Especially the herbicides were detected mainly in May and June in the stream water. The pesticide were detected thirty pesticides by fungicide 2, insecticide 6, herbicide 5 in water of Jungam Koseong agricultural watershed and detection concentrations were range 0.01${\sim}$7.21 ppb. In regard to the detected pesticides, the concentration of individual pesticides measured in surface water of the study areas never exceeded guidelines for agriculture chemicals concerning water quality-effluent from paddy fields in Japan (Katayama, 2003). Runoff rate of pesticides was range 0.07${\sim}$3.06 % from Kongju agricultural land to watershed after applied pesticides.

Studies on Mycoplasma-Like Organism Associated with Witches' Broom of Rhus javanica (I) (Mycoplasma 성(性) 붉나무빗자루병(病)에 관(關)한 연구(硏究) (I))

  • Kim, Young Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.1-15
    • /
    • 1980
  • The occurrence of witches' broom of Rhus javanica was first noticed in Korea by the author in 1979. Subsequently, studies were made on the symptomatology, etiology, and transmission of the disease, as well as the effect of some antibiotics on the disease development. The results of these studies are summarized as follows: 1. Symptoms of the infected plant were characterized by dwarfing of the tree accompanied by yellowing and brooming of the foliage. 2. Electron microscopy of witches' broom diseased Rhus javanica plant revealed the occurrence of numerous mycoplasma-like organisms (MLO's) in the phloem tissue cells (sieve tube elements and phloem parenchyma cells) of the rachis and midribs of infected leaves. 3. The MLO's were bounded by a single unit membrane and contained ribosome-like granules and strands presumed to be DNA. It also appears that the MLO multiply possibly by budding as well as binary and plurinary fission. 4. In the midrib of healthy leaves, vascular bundles were collaterally discontinuous. In the diseased leaves, however, xylems were connected to each other and phloem cells showed an atrophy. Granules, which were prominent in the normal abaxial epidermis, were not observed in the peidermis of diseased leaves. 5. Electron microscopy revealed crystals or osmopholic granules in the phloem parenchyma cells, and that normal stacks of grana were not developed in the chloroplasts of infected levels. 6. The disease was experimentally transmitted by grafting. Budding was more effective than crown grafting for transmitting the disease. The disease has been transmitted by grafting even when complete union of stocks and scions has not taken place. The disease agent was not transmitted by sap inoculation. Insect transmission has not been confirmed. 7. Dipping the roots of infected plants into the 500 ppm and 1,000 solutions of either tetracycline HCI or oxytetracycline, HCI was more effective on temporary remision of the symptoms than spraying the 100 ppm and 200 ppm solutions of the same antibiotics. A greater effect was achieved through dipping into 1,000 ppm than into 500 ppm.

  • PDF

Changes in Abscisic Acid, Carbohydrate, and Glucosinolate Metabolites in Kimchi Cabbage Treated with Glutamic Acid Foliar Application under Extremely Low Temperature Conditions (이상저온 시 글루탐산 엽면 처리에 의한 배추의 ABA, 탄수화물 및 Glucosinolate 대사체 변화)

  • Sim, Ha Seon;Jo, Jung Su;Woo, Ui Jeong;Moon, Yu Hyun;Lee, Tae Yeon;Lee, Hee Ju;Wi, Seung Hwan;Kim, Sung Kyeom
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.170-179
    • /
    • 2022
  • Glutamic acid is a precursor of essential amino acids that play an important role in plant growth and development. It is one of the biostimulants that reduce cold stress damage by stimulating biosynthetic pathways leading to cryoprotectants. This study evaluated the effects of glutamic acid foliar application on Kimchi cabbage under low-temperature stress. There were six treatments, combining three photo-/dark periods temperature levels (11/-1℃ extremely low, E; 16/4℃ moderately low, M; and 21/9℃ optimal, O) with and without glutamic acid foliar application (0 and 10 mg·L-1; Glu 0 and Glu 10). Glutamic acid foliar application was sprayed once 10 days after transplanting, and then temperature treatment immediately after glutamic acid foliar application was conducted for up to four days. After four days of treatment, abscisic acid (ABA), phaseic acid (PA), dihydrophaseic acid (DPA), and abscisic acid-glucose ester (ABA-GE) contents were higher with Glu 10 treatment than Glu 0 treatment in M treatment. Glucose content was highest in E with Glu 10 treatment (52.1 mg·100 g-1 dry weight), while fructose content was highest in O with Glu 0 treatment (134.6 mg·100 g-1 dry weight). The contents of glucolepiddin (GLP), glucobrassicin (GBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (GNBS), and gluconasturtiin (GNS) were highest among all treatments in E with Glu 10 treatments (0.72, 2.05, 1.67, 9.40 and 0.85 µmol·g-1 dry weight). After two days of treatment, rapid changes in PA and DPA contents of E with Glu 10 treatments were confirmed, and several individual glucosinolate contents (GLP, GBS, 4MGBS, GNBS, and GNS) were significantly different depending on low temperature and glutamic acid treatment. In addition, the content of fructose was significantly lower than that of O treatment in E and M treatments after four days of treatment. Therefore, although the changes in PA, DPA, glucose, fructose, and individual glucosinolates according to low temperature and glutamic acid foliar treatment were shown. A clear correlation between low temperature and glutamic acid effects could not be evaluated. Results indicated that Brassica crops are cryophilic vegetables, do not react sensitively to low temperatures, and mostly have cold resistance.

Change in the Sensitivity to Propiconazole of Fusarium graminearum Species Complex Causing Head Blight of Barley and Wheat in Jeolla Province (전남북 지역 맥류 붉은곰팡이병균의 Propiconazole 약제에 대한 감수성 변화)

  • Jiseon Baek;Ju-Young Nah;Mi-Jeong Lee;Su-Bin Lim;Jung-Hye Choi;Ja Yeong Jang;Theresa Lee;Hyo-Won Choi;Jeomsoon Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.281-289
    • /
    • 2022
  • Fusarium head blight is an important disease of small grains. It is mainly caused by members of the Fusarium graminearum species complex (FGSC). Barley and wheat growers spray fungicides, especially demethylation-inhibitor fungicides, to suppress the disease. The objective of this study was to examine the changes in the sensitivity of the FGSC population to the triazole fungicide, propiconazole. A total of 124 and 350 isolates of FGSC were obtained from barley and wheat in Jeolla Province during 2010-2016 and 2020-2021, respectively. The species identity and trichothecene chemotypes of the FGSC isolates were determined based on polymerase chain reaction assays targeting translation elongation factor 1-alpha and TRI12 genes, respectively. Sensitivity to propiconazole was determined based on the effective concentration that reduced 50% of the mycelial growth (EC50) using the agar dilution method. Of all isolates, F. asiaticum with the nivalenol chemotype was the most common (83.9% in 2010-2016 and 96.0% in 2020-2021), followed by F. asiaticum with the 3-acetyl deoxynivalenol chemotype (12.1% in 2010-2016 and 2.9% in 2020-2021). The EC50 values of the isolates collected in 2010-2016 and 2020-2021 ranged from 0.0180 to 11.0166 ㎍/mL and 1.3104 to 17.9587 ㎍/mL, respectively. The mean EC50 value of the isolates increased from 3.8648 ㎍/mL in 2010-2016 to 5.9635 ㎍/mL in 2020-2021. The baseline resistance to propiconazole was determined to be 7 ㎍/mL, based on the EC50 value of isolates collected in 2010-2016, and the ratio of resistant isolates increased from 9.7% in 2010-2016 to 28.6% in 2020-2021.

Characteristics of Manure and Estimation of Nutrient and Pollutant of Holstein Dairy Cattle (홀스타인 젖소 분뇨의 특성과 비료성분 및 오염물질 부하량 추정)

  • Choi, D.Y.;Choi, H.L.;Kwag, J.H.;Kim, J.H.;Choi, H.C.;Kwon, D.J.;Kang, H.S.;Yang, C.B.;Ahn, H.K.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.137-146
    • /
    • 2007
  • This study was conducted to determine fertilizer nutrient and pollutant production of Holstein dairy cattle by estimating manure characteristics. The moisture content of feces was 83.9% and 95.1% for urine. The pH of feces and urine were in the ranges of 7.0~7.4 and 7.5~7.8, respectively. The average BOD5, COD, SS, T-N, T-P concentrations of the dairy feces were 18,294, 52,765, 102,889, 2,575, and 457mg/ℓ, respectively. Dairy urine showed lower levels of BOD5(5,455mg/ℓ), COD(8,089mg/ℓ), SS(593mg/ℓ), T-N(3,401mg/l), and T-P(13mg/ℓ) than feces. The total daily produced pollutant amounts of a dairy cow were 924.1g(Milking cow), 538.8g(Dry cow), 284.4g(Heifer) of BOD5, 2,336.5g (Milking cow), 1,651.8g(Dry cow), 734.1g(Heifer) of COD and 4,210.1g(Milking cow), 2,417.1g(Dry cow), 1,629.1g(Heifer) of SS and 194.8g(Milking cow), 96.4g(Dry cow), 58.3g(Heifer) of T-N and 24.0g(Milking cow), 10.2g(Dry cow), 6.1g(Heifer) of T-P. The calculated amount of pollutants produced by a 450kg dairy cow for one year were 181.3kg of BOD5, 492.5kg of COD, 899.9kg of SS, 36.0kg of T-N and 4.1kg of T-P. The total yearly estimated pollutant production from all head(497,261) of dairy cattle in Korea is 90,149 tons of BOD5, 244,890 tons of COD, 447,491 tons of SS, 17,898 tons of T-N and 2,008 tons of T-P. The fertilizer nutrient concentrations of dairy feces was 0.26% N, 0.1% P2O5 and 0.14% K2O. Urine was found to contain 0.34% N, 0.003% of P2O5 and 0.31% K2O. The total daily fertilizer nutrients produced by dairy cattle were 197.4g (Milking cow), 97.4g(Dry cow), and 57.9g(Heifer) of Nitrogen, 54.2g(Milking cow), 22.2g(Dry cow), and 14.2g(Heifer) of P2O5 and 110.8g(Milking cow), 80.4g (Dry cow), and 39.5g(Heifer) of K2O. The total yearly estimated fertilizer nutrient produced by a 450kg dairy animal is 36.2kg of N, 8.8kg of P2O5, 24.6kg of K2O. The estimated yearly fertilizer nutrient production from all dairy cattle in Korea is 18,000 tons of N, 4,397 tons of P2O5, 12,206 tons of K2O. Dairy manure contains useful trace minerals for crops, such as CaO and MgO, which are contained in similar levels to commercial compost being sold in the domestic market. Concentrations of harmful trace minerals, such as As, Cd, Hg, Pb, Cr, Cu, Ni, Zn, met the Korea compost standard regulations, with some of these minerals being in undetected amounts.

Variation of Pesticide Residues in Strawberries by Washing and Boiling Processes (딸기의 세척 및 가공 과정에 따른 농약 잔류량 변화)

  • Kwak, Se-Yeon;Lee, Sang-Hyeob;Jeong, Hye-Rin;Nam, Ae-Ji;Sarker, Aniruddha;Kim, Hyo-Young;Lim, Chae-Uk;Cho, Hyun-Jeong;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.281-290
    • /
    • 2019
  • BACKGROUND: As the demand for strawberries increases, people are paying attention to food safety in strawberry, especially pesticide residues. To remove the pesticides from strawberry, various washing and processing technique in households are additionally required. METHODS AND RESULTS: Strawberries were washed with water, detergent, alcohol, and ultrasonication and processed to strawberry jam. The mean reduction efficiency according to the washing solvent and method was found to be higher in the order of detergent (42.5%) > alcohol (41.7%) > water (41.3%) > ultrasoniation with alcohol (40.2%) > ultrasoniation with water (38.6%) > ultrasoniation with detergent (36.9%), but there was no significant difference among the treatments. The residue levels of pesticides during processing to jam decreased by 11.9-94.4% for etoxazole, fluopyram, procymidone, spiromesifen, and prochloraz, while the other pesticides were concentrated by boiling, or rather increased by 11.8-40.2%. However, when the residue levels were converted to residual amounts in consideration of the change in weight after processing, the residual amounts of the tested pesticides were reduced by 59.8-98.4% during processing. The processing factor (PF) were different for each pesticide, but PFs were < 1 for all washing solvents and methods, and 0.06-1.40 when processed into jam. CONCLUSION: To ensure the consumption of pesticide-free strawberry, the most efficient washing method is to immerse the strawberry in fresh water for few minutes, followed by rinsing them under running water.

Dissipation Patterns of Triazole Fungicides Estimated from Kinetic Models in Apple (Triazole계 살균제의 사과 중 잔류양상의 Kinetic Model 적용)

  • Kim, Ji-Hwan;Hwang, Jeong-In;Jeon, Young-Hwan;Kim, Hyo-Young;Ahn, Ji-Woon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.4
    • /
    • pp.235-239
    • /
    • 2012
  • While cultivating crops, it is important to predict the biological half-lives of applied pesticides to ensure the safety of agricultural products. Dissipation patterns of the triazole fungicides, such as diniconazole and metconazole, during the cultivation of apple were established by utilizing the dissipation curve. As well as, the biological half-lives of the pesticides in apples were calculated using the residue amounts of them. The apples were harvested from 0 to 14 days after spraying diniconazole (WP) and metconazole (SC) at a recommended and three times of the recommended dose. Initial concentrations of diniconazole in apple were 0.09 and 0.15 mg/kg at a recommended and three times of the recommended dose, respectively, which were below MRL 1.0 mg/kg established by KFDA. The equations of biological half-life were $C_t=0.0811e^{-0.179x}$(half life: 3.9 days) and $C_t=0.1451e^{-0.148x}$ (half life: 4.7 days), respectively. In case of metconazole, initial concentrations in apple were 0.10 and 0.25 mg/kg, below MRL 1.0mg/kg, and biological half-life equations were $C_t=0.0857e^{-0.055x}$ (half life: 12.6 days) and $C_t=0.2304e^{-0.052x}$ (half life: 13.3 days), respectively. Therefore, when triazole fungicides were applied during the cultivation of apple, the biological half-life need to be calculated with the optimal equation model.

Effect of Organic Acid on Value of VBN, TBARS, Color and Sensory Property of Pork Meat (유기산 처리가 돈육의 VBN, TBARS, 색깔, 관능적 특성에 미치는 영향)

  • Kang, S.N.;Jang, A.;Lee, S.O.;Min, J.S.;Lee, M.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.443-452
    • /
    • 2002
  • The objective of this study was to evaluate the effects of concentration(0, 0.5, 1, 1.5 and 2%)of lactic, citric and acetic acid on chemical and sensory characteristics of fresh pork loins. The pork loins were sprayed with organic acid by a hand sprayer for 15 sec at 30$^{\circ}C$, packaged under air and stored for 14 days at 4$^{\circ}C$ and then during the storage time analyzed for VBN, TBARS, color and sensory property. All treated loins showed lower(p<0.05) VBN and TBARS values than the control's. Two percents of organic acid was the most efficient than the rest of treatments(p<0.05). All of pork loins that were sprayed with organic acids had higher CIE L*value(p<0.05) during storage. However, on 14th day, L* value of meat treated with lactic and acetic acid in 1.5 and 2% concentrations was not different from that of initial fresh loins(0 days). According to the results of sensory test, lactic acid, citric acid and acetic acid did not affected bloody and off-flavor of the meat for one day at 4$^{\circ}C$. While the acetic acid spraying resulted in the strong sour flavor of meat after one day.