• Title/Summary/Keyword: 산 촉매 전환

Search Result 105, Processing Time 0.023 seconds

Biodiesel production using lipase producing bacteria isolated from button mushroom bed (양송이 배지에서 유래한 Lipase 생산균을 이용한 바이오디젤 생산)

  • Kim, Heon-Hee;Kim, Chan-Kyum;Han, Chang-Hoon;Lee, Chan-Jung;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • A lipase producing bacterium was isolated from button mushroom bed, which showing high clear zone on agar media containing Tributyrin as the substrate. The strain was identified as Burkholderia cepacia by analysis of 16S rDNA gene sequence. Crude lipase (CL) was partially purified from 70% ammonium sulfate precipitation using the culture filtrate of B. cepacia. Immobilized lipases were prepared by cross-linking method with CL from B. cepacia and Novozyme lipase (NL) onto silanized Silica-gel as support. Residual activitiy of the immobilized CL (ICL) and immobilized NL (INL) was maintained upto 61% and 72%, respectively. Biodiesel (Fatty acid methyl ester, FAME) was recovered by transesterification and methanolysis of Canola oil using NaOH, CL and ICL as the catalysts to compare the composition of fatty acids and the yield of FAME. Total FAME content was NaOH $781mg\;L^{-1}$, CL $681mg\;L^{-1}$ and ICL $596mg\;L^{-1}$, in which the highest levels of FAME was observed to 50% oleic acid (C18:1) and 22% stearic acid (C18:0). In addition, the unsaturated FAME (C18:1, C18:2) decreased, while saturated FAME (C16:0, C18:0) increased according to increasing the reaction times with both CL and ICL, supporting CL possess both transesterification and interesterification activity. When reusability of ICL and INL was estimated by using the continuous reaction of 4 cycles, the activity of ICL and INL was respectively maintained 66% and 79% until the fourth reaction.

The Effect of Structure and Acidity of Fluorinated HZSM-5 on Ethylene Aromatization (불소화 HZSM-5의 구조 및 산도가 에틸렌 방향족화에 미치는 영향)

  • Kyeong Nan, Kim;Seok Chang, Kang;Geunjae, Kwak
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.15-22
    • /
    • 2023
  • Recent studies have actively investigated ways to improve the economic feasibility and efficiency of the Fischer-Tropsch process by increasing the yields of the monocyclic aromatic compounds (BTEX). In this study, ethylene was selected as a model of F-T-derived hydrocarbons, and the ethylene-to-aromatics (ETA) reaction was investigated according to changes in acid characteristics, mesopores, and crystallinity of HZSM-5 (HZ5). Fluorinated HZ5 was prepared by calcination followed by impregnation of an aqueous NH4F solution having different molar concentrations in HZ5, and the structural and chemical properties of F/HZ5 were investigated through Brunauer-Emmett-Teller (BET), solid-state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), NH3-temperature-programmed desorption (TPD), and pyridine-IR spectroscopy. The ETA reactions were performed at 673 K under 0.1 MPa, and fluorinating HZ5 by an aqueous NH4F solution of 0.17 M improved ethylene conversion, BTEX selectivity, and catalytic stability due to acidity, mesopore fraction, and crystallinity.

Biorefinery Based on Weeds and Agricultural Residues (잡초 및 농림부산물을 이용한 Biorefinery 기술개발)

  • Hwang, In-Taek;Hwang, Jin-Soo;Lim, Hee-Kyung;Park, No-Joong
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.340-360
    • /
    • 2010
  • The depletion of fossil fuels, ecological problems associated with $CO_2$ emissions climate change, growing world population, and future energy supplies are forcing the development of alternative resources for energy (heat and electricity), transport fuels and chemicals: the replacement of fossil resources with $CO_2$ neutral biomass. Several options exist to cover energy supplies of the future, including solar, wind, and water power; however, chemical carbon source can get from biomass only. When used in combination with environmental friend production and processing technology, the use of biomass can be seen as a sustainable alternative to conventional chemical feedstocks. The biorefinery concept is analogous to today's petroleum refinery, which produce multiple fuels and chemical products from petroleum. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is the co-production of a spectrum of bio-based products (food, feed, materials, and chemicals) and energy (fuels, power, and heat) from biomass [definition IEA Bioenergy Task 42]. By producing multiple products, a biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstocks. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. Future biorefinery may play a major role in producing chemicals and materials as a bridge between agriculture and chemistry that are traditionally produced from petroleum. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role.

Bioethanol Production from Macroalgal Biomass (해조류 바이오매스를 이용한 바이오에탄올 생산기술)

  • Ra, Chae Hun;Sunwoo, In Young;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.976-982
    • /
    • 2016
  • Seaweed has high growth rate, low land usage, high CO2 absorption and no competition for food resources. Therefore, the use of lignin-free seaweed as a raw material is arising as a third generation biomass for bioethanol production. Various pretreatment techniques have been introduced to enhance the overall hydrolysis yield, and can be categorized into physical, chemical, biological, enzymatic or a combination. Thermal acid hydrolysis pretreatment is one of the most popular methods to attain high sugar yields from seaweed biomass for economic reasons. At thermal acid hydrolysis conditions, the 3,6-anhydro-galactose (AHG) from biomass could be converted to 5-hydroxymethylfurfural (HMF), which might inhibit the cell growth and decrease ethanol production. AHG is prone to decomposition into HMF, due to its acid-labile character, and subsequently into weak acids such as levulinic acid and formic acid. These inhibitors can retard yeast growth and reduce ethanol productivity during fermentation. Thus, the carbohydrates in seaweed require effective treatment methods to obtain a high concentration of monosaccharides and a low concentration of inhibitor HMF for ethanol fermentation. The efficiency of bioethanol production from the seaweed biomass hydrolysate is assessed by separate hydrolysis and fermentation (SHF). To improve the efficiency of the ethanol fermentation of mixed monosaccharides, the adaptation of yeast to high concentration of sugar could make simultaneous utilization of mixed monosaccharides for the production of ethanol from seaweed.

Optimization of Medium Components using Response Surface Methodology for Cost-effective Mannitol Production by Leuconostoc mesenteroides SRCM201425 (반응표면분석법을 이용한 Leuconostoc mesenteroides SRCM201425의 만니톨 생산배지 최적화)

  • Ha, Gwangsu;Shin, Su-Jin;Jeong, Seong-Yeop;Yang, HoYeon;Im, Sua;Heo, JuHee;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.861-870
    • /
    • 2019
  • This study was undertaken to establish optimum medium compositions for cost-effective mannitol production by Leuconostoc mesenteroides SRCM201425 isolated from kimchi. L. mesenteroides SRCM21425 from kimchi was selected for efficient mannitol production based on fructose analysis and identified by its 16S rRNA gene sequence, as well as by carbohydrate fermentation pattern analysis. To enhance mannitol production by L. mesenteroides SRCM201425, the effects of carbon, nitrogen, and mineral sources on mannitol production were first determined using Plackett-Burman design (PBD). The effects of 11 variables on mannitol production were investigated of which three variables, fructose, sucrose, and peptone, were selected. In the second step, each concentration of fructose, sucrose, and peptone was optimized using a central composite design (CCD) and response surface analysis. The predicted concentrations of fructose, sucrose, and peptone were 38.68 g/l, 30 g/l, and 39.67 g/l, respectively. The mathematical response model was reliable, with a coefficient of determination of $R^2=0.9185$. Mannitol production increased 20-fold as compared with the MRS medium, corresponding to a mannitol yield 97.46% when compared to MRS supplemented with 100 g/l of fructose in flask system. Furthermore, the production in the optimized medium was cost-effective. The findings of this study can be expected to be useful in biological production for catalytic hydrogenation causing byproduct and additional production costs.