• Title/Summary/Keyword: 산화 환원 반응

Search Result 792, Processing Time 0.035 seconds

Electrochemical Performance of the Solid Oxide Fuel Cell with Different Thicknesses of BSCF-based Cathode (BSCF계 혼합전도성 공기극의 두께에 따른 고체산화물 연료전지의 전기화학적 특성)

  • Jeong, Jaewon;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.186-192
    • /
    • 2013
  • In order to reduce the costs and to improve the durability of solid oxide fuel cell (SOFC), the operating temperature should be decreased while the power density is maintained as much as possible. However, lowering the operating temperature increases the cathode interfacial polarization resistances dramatically, limiting the performance of low-temperature SOFC at especially purely electronic conducting cathode. To improve cathode performance at low temperature, the number of reaction sites for the oxygen reduction should be increased by using a mixed ionic and electronic conducting (MIEC) material. In this study, anode-supported fuel cells with two different thicknesses of the MIEC cathode were fabricated and tested at various operating temperatures. The anode supported cell with $32.5{\mu}m$-thick BSCFZn-LSCF cathode layer showed much lower polarization resistance than that with $3.2{\mu}m$ thick cahtode and higher power density especially at low temperature. The effects of cathode layer thickness on the electrochemical performance are discussed with analysis of impedance spectra.

Anodic Oxidation of Potassium Iodide Solution (Ⅰ) (요오드화칼륨 수용액의 양극산화 (제1보))

  • Nam, Chong-Woo;Kim, Hark-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.378-384
    • /
    • 1973
  • To investigate the mechanism of the reaction of electrolytic oxidation of iodide to iodate ions, polarization curves are determined in various kinds of solution using electrodeposited lead peroxide and platinum anodes. It was observed from the polarization curves that the limiting current is exists at concentration 1.5 M of potassium iodide, and these limiting current disappeared as potassium hydroxide was added up to concentration of 0.1 M. while in case of platinum anode, limiting current did not appear in dilute potassium iodide solution. These results are owing to the chemical reaction, $PbO_2+2I^{-}+2H^+{\to}PbO+I_2+H_{2}O$ ocurring at the surface of lead peroxide anode. Also, we studied to obtain the optimum conditions of electrolytic preparation of iodate from iodide solution using a cell without the diaphragm. The results are that; (a) addition of potassium dichromate at the anti-reducing agent is proper in concentration of 0.1 g/l, (b) electrolytic temperature is not so much effective in raising the current efficiency, (c) current efficiency is increased with current density, and (d) electrolysis is the most effective in weak alkaline solutions.

  • PDF

Effect of Ultraviolet (UV-B) on Antioxidants and Antioxidative Enzymes in Garden Balsam(Impatiens balsamina L.) (자외선(UV-B)이 봉선화(Impatiens balsamina L.)의 항산화제 및 항산화 효소에 미치는 영향)

  • Kim, Hak-Yoon
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.135-142
    • /
    • 2010
  • To investigate the effects of ultraviolet(UV-B) on growth and biochemical defense responses of plant, garden balsam (Impatiens balsamina L.) was subjected to enhanced UV-B irradiation [daily dose: 0.02 (No UV-B) and 11.34 (enhanced UV-B) kJ $m^{-2}$ ; $UV-B_{BE}$] for 3 weeks. Enhanced UV-B drastically inhibited leaf area as well as dry weight of garden balsam. The content of malondialdehyde was significantly increased by about 50% after 3 weeks of UV-B irradiation. The ratios of dehydroascorbate/ascorbate and oxidized glutathione/reduced glutathione were also considerably increased by UV-B irradiation. Three major polyamines of garden balsam leaves: putrescine, spermidine and spermine were observed. All polyamine contents were increased with UV-B irradiation. The enzyme (superoxide dismutase, ascorbate peroxidase etc.) activities of garden balsam were increased by the UV-B enhancement. Based on the results, enhanced UV-B caused oxidative stress in garden balsam and biochemical protection responses might be activated to prevent from damaging effects of oxidative stress generated by UV-B irradiation.

Photometric Determination of Chlorite ion by Flow Injection Analysis (흐름주입 분석에 의한 아염소산 이온의 분광광도법 정량)

  • Choi, Yong Wook;Lee, Su Young;Kim, Mi Kyung;Park, Sung Ho
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.556-562
    • /
    • 2000
  • The determination of chlorite ion by flow injection analysis(FIA) with iodometric UV detection were investigated. Under rather acidic condition, chlorite ion react with iodide ion to form iodine and itself is reduced to chloride ion. The chlorite ion was determined indirectly by measuring absorbance of yellow colored iodine at 370 nm. The lengths of the mixing coil and the reaction coil, the pH of the acid stream, the concentration of the iodide ion, the injection loop volume, temperature, and flowrate were optimized as parameters for selectively determining a sort of inorganic disinfection by-product, chlorite ion by using FIA-UV detection setup. Masking agents for removing oxidants or interferences from the prepared water were tested. Independent calibration curve presented linear range of 0.002-0.2 mg/L for chlorite ion with a correlation coefficient of 0.999 or better. The limit of detection(LOD) was 0.18 ${\mu}g/L$ for chlorite ion.

  • PDF

Development of an Analytical Method for the Spectrometric Simultaneous Determination of Fe2+ and Fe3+ Ions Using a Technique of Flow Injection Analysis (흐름주입분석기법을 이용한 Fe2+ 이온과 Fe3+이온의 광학적 동시정량을 위한 분석기법의 개발)

  • Hwang, Hun;Kim, Jin Ho
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.5
    • /
    • pp.419-437
    • /
    • 2002
  • An analytical method for the spectrometric simultaneous determination of the individual ions in the mix-tures of $Fe^{2+}$ and $Fe^{2+}$ ions utilizing a technique of flow injection analysis has been developed. The method was based on the oxidation reaction between $Fe^{2+}$ ion and $H_2O_2$ in an acidic medium and the subsequent formation of a red Fe$(SCN)^{3-x}_x$ ion by the complexation reaction between $Fe^{2+}$ ion and $SCN^-$ ion. Unlike the conventional methods which require separate processes for the pre-treatment of the sample solution, the current method uses the same FIA system for the pre-treatment and the analysis of the sample. The detection limit for the determination of $Fe^{2+}$ ion was found to be 6.00${\times}10^{-7}$M.

Electrochemical Study of a Single Particle of Active Material for Secondary Battery using the Microelectrode (마이크로 전극에 의한 2차 전지용 활물질 단일 입자의 전기화학적 평가)

  • Kim Ho-Sung;Lee Choong-Gon
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.95-99
    • /
    • 2006
  • Electrochemical properties were studied for a single particle of active material of hydrogen storage alloy $(MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3})$ and nickel hydroxides $(NiOH)_2$ for the secondary Nickel Metal Hydride (Ni-MH) batteries using the microelectrode, which was manipulated to make electrical contact with an active material particle for cyclic voltammograms (CV) and potential-step experiments. As a result of CV test, it was found that three kinds of hydrogen oxidation peaks at -0.9, -0.75 and -0.65 V and hydrogen evolution peak at -0.98 V for hydrogen storage alloy were separately observed and two kinds of peaks of proton oxidation/reduction at 0.45 and 0.32 V and oxygen evolution reaction (OER) at 0.6 V for nickel hydroxides were also more clearly observed. Furthermore hydrogen diffusion coefficient within a single particle was also found to vary the order between $10^{-9}\;and\;10^{-10}cm^2/s$ over the course of hydrogenation and dehydrogenation process for potential-step experiments.

Hydrogen Storage and Release by Redox Reaction of Fe/Zr/Mo Mixed Oxide Mediums (Fe/Zr/Mo 혼합 산화물 매체의 Redox 반응을 이용한 수소 저장 및 방출)

  • Je, Han-Sol;Kang, Eun-Jee;Lee, Su-Gyung;Park, Chu-Sik;Kim, Young-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.616-624
    • /
    • 2011
  • Hydrogen storage and release of Fe/Zr/Mo mixed oxide mediums were investigated by hydrogen reduction and water splitting oxidation($Fe_3O_4+4H_2{\rightleftharpoons}3Fe+4H_2O$). As the results of TPR/O, Mo was an additive to enhance the reactivity of water splitting oxidation as well as the stability of the medium. On the other hand, it seemed that $ZrO_2$ additive provided the passway for the diffusion of gaseous chemicals on the medium in repeated redox cycles. Among the Fe/Zr/Mo mediums, a FeZrMo-7 medium (Fe/Zr/Mo=80/13/7mol%) exhibited the best performance with good durability during five repeated redox cycles. The amount of hydrogen evolved on the medium was maintained at ca. 10.7mmol-$H_2$/g-medium corresponding to the hydrogen storage amount of ca. 2.2wt%.

Quality characteristics and antioxidant activities of pan-fried Hwajeon added with curcuma as a functional ingredient (강황을 첨가한 팬 프라잉 화전의 품질 특성과 산화방지활성)

  • Han, Areum;Surh, Jeonghee
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.296-303
    • /
    • 2017
  • Curcuma powder, having a significantly higher electron donating ability than glutinous rice flour (p<0.001), was added into hwajeon at 0-5% concentrations. There was no significant difference in the moisture content of hwajeon depending on the curcuma content, which was attributed to a similar water-holding capacity of curcuma powder and glutinous rice flour when subjected to hot water. As the curcuma content increased, the redness of dough and hwajeon increased, and the lightness of hwajeon decreased to a higher degree than that of dough. With the addition of curcuma, hardness of hwajeon increased and its adhesiveness decreased, presumably due to the increased content of amylose relative to amylopectin. Sensory evaluation revealed that the strong flavor of curcuma was a negative determinant of the preference for hwajeon. Nevertheless, total reducing capacity and 2.2'-diphenyl-1-picrylhydrazyl radical scavenging activity increased in proportion to the curcuma content in hwajeon (p<0.001).

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.

Detection and Determination of the Peroxyl Radical in the Photolysis with TiO2 (TiO2와의 광반응하에서 생성되는 페록시라디칼(HO2・/O2-)의 검출 및 정량화)

  • Kwon, Bumgeun;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.45-49
    • /
    • 2010
  • We have developed and demonstrated the use of a new kinetic method as an analytical tool for the measurement of $HO_2{\cdot}/O_2{\cdot}^-$. This new method is based on the reduction of $Fe^{3+}$-Ethylene Diamine Tetra Acetate, EDTA) into $Fe^{2+}$-EDTA by $HO_2{\cdot}/O_2{\cdot}^-$ and the well-known Fenton-like reaction of $H_2O_2$ and $Fe^{2+}$-EDTA to yield the hydroxyl radicals ($OH{\cdot}$). Since this method for $HO_2{\cdot}/O_2{\cdot}^-$ shows high sensitivity and allows a simple calibration system, it can contribute significantly to understanding the basic functions of $HO_2{\cdot}/O_2{\cdot}^-$ in advanced oxidation processes for water treatment. Moreover, the present technique has the advantage of using inexpensive and easily available nonenzymatic reagents and of being insensitive to the moderate concentration of possible interferences often found in aqueous phase.