Detection and Determination of the Peroxyl Radical in the Photolysis with TiO2

TiO2와의 광반응하에서 생성되는 페록시라디칼(HO2・/O2-)의 검출 및 정량화

  • Received : 2010.04.02
  • Accepted : 2010.04.29
  • Published : 2010.07.01

Abstract

We have developed and demonstrated the use of a new kinetic method as an analytical tool for the measurement of $HO_2{\cdot}/O_2{\cdot}^-$. This new method is based on the reduction of $Fe^{3+}$-Ethylene Diamine Tetra Acetate, EDTA) into $Fe^{2+}$-EDTA by $HO_2{\cdot}/O_2{\cdot}^-$ and the well-known Fenton-like reaction of $H_2O_2$ and $Fe^{2+}$-EDTA to yield the hydroxyl radicals ($OH{\cdot}$). Since this method for $HO_2{\cdot}/O_2{\cdot}^-$ shows high sensitivity and allows a simple calibration system, it can contribute significantly to understanding the basic functions of $HO_2{\cdot}/O_2{\cdot}^-$ in advanced oxidation processes for water treatment. Moreover, the present technique has the advantage of using inexpensive and easily available nonenzymatic reagents and of being insensitive to the moderate concentration of possible interferences often found in aqueous phase.

본 연구는 수중에서 광분해 반응시 발생되는 페록시라디칼을 검출하고 정량화하는 방법에 관한 것으로 비교적 간단한 방법으로 높은 감응도를 나타낼 수 있어 수처리를 위한 고도산화공정에서 유기물 분해를 위해 주요 역할을 하는 페록시라디칼의 정량화에 효과적으로 이용될 수 있다. 이 방법은 페록시라디칼이 $Fe^{3+}$-EDTA와 반응하여 $Fe^{2+}$-EDTA로 환원되는 반응에 기초를 둔 것으로 경제적이며 검출 및 정량을 위해서 손쉽게 사용할 수 있는 비효소계의 시약을 사용한다는 이점과 수계에서 흔히 발생하는 반응의 방해에 민감하지 않은 장점을 지니고 있다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. 김종오, 정종태, 최원열(2006), $UV/TiO_{2}/H_{2}O_{2}$ 공정을 이용한 휴믹산과 중금속 제거, 한국지반환경공학회지, Vol. 7, No. 4, pp. 5-13.
  2. Bielski, B.H.J., Ravindra, L.A., Diane, E.C. and Wolf, B.(1984), Reevaluation of the Reactivity of Hydroxylamine with $O_{2}^{-}/HO_{2}$, Analytic Biochemistry, Vol. 142, No. 1, pp. 207-209. https://doi.org/10.1016/0003-2697(84)90539-6
  3. Fridovich, I.(1970), Quantitative Aspects of the Production of Superoxide Anion Radical by Milk Xanthine Oxidase, Journal of Biological Chemistry, Vol. 245, No. 16, pp. 4053-4057.
  4. Halliwell, B.(1995), Antioxidant Characterization; Methodology and Mechanism, Biochemical Pharmacology, Vol. 49, No. 10, pp. 1341-1348. https://doi.org/10.1016/0006-2952(95)00088-H
  5. Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnermann, D. W.(1995), Environmental Application of Semiconductor Photocatalysis, Chemical Reviews, Vol. 95, No. 1, pp. 69-95. https://doi.org/10.1021/cr00033a004
  6. Ibusuki, T.(1983), Influence of Trace Metal Ions on the Determination of Hydrogen Peroxide in Rainwater by Using a Chemiluminescent Technique, Atmospheric Environment, Vol. 17, No. 2, pp. 393-396. https://doi.org/10.1016/0004-6981(83)90056-2
  7. Linsebigler, A. L., Lu, G., Yaters, J. T. and Jr.(1995), Photolysis on $TiO_{2}$ Surface: Principles, Mechanisms and Selected Results, Chemical Reviews, Vol. 95, No. 3, pp. 735-758. https://doi.org/10.1021/cr00035a013
  8. Mills, A. and Hunte, S. I.(1997), An Overview of Semiconductor Photolysis, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 108, No. 1, pp. 1-35. https://doi.org/10.1016/S1010-6030(97)00118-4
  9. Okado-Matsumoto, A. and Fridovich, I.(2001), Assay of Superoxide Dismutase; Cautions Relevant to the Use of Cytochrome c, a Sulfonated Tetrazolium, and Cyanide, Analytical Biochemistry, Vol. 298, No. 2, pp. 337-342. https://doi.org/10.1006/abio.2001.5385