• Title/Summary/Keyword: 산화 환원 반응

Search Result 792, Processing Time 0.034 seconds

Study on metal-supported solid oxide fuel cells (신구조 금속지지체형 고체산화물 연료전지)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.129-132
    • /
    • 2007
  • Advanced structure of metal-supported solid oxide fuel cells was devised to overcome sealing problem and mechanical instability in ceramic-supported solid oxide fuel cells. STS430 whose dimensions were 26mm diameter, 1mm thickness and 0.4mm channel width was used as metal support. Thin ceramic layer composed of anode(Ni/YSZ) and electrolyte(YSZ) was joined with STS430 metal support by using a cermet adhesive. $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_{3}$ perovskite oxide was used as cathode material. It was noted that oxygen reduction reaction of cathode governed the overall cell performance from oxygen partial pressure dependance.

  • PDF

The effect of Rh/Ce/Zr additives on the redox cycling of iron oxide for hydrogen storage (산화철의 환원-산화 반응을 이용한 수소저장에 미치는 Rh/Ce/Zr의 효과)

  • Lee, Dong-Hee;Cha, Kwang-Seo;Park, Chu-Sik;Kang, Kung-Soo;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.49-52
    • /
    • 2007
  • We investigated hydrogen storage and production properties using redox system of iron oxide($Fe_{3}O_{4}$ + $4H_{2}$ ${\leftrightarrows}$ 3Fe + $4H_{2}O$) modified with rhodium, ceria and zirconia under atmospheric pressure. Reduction of iron oxide with hydrogen(hydrogen storage) and re-oxidation of reduced iron oxide with steam(hydrogen evolution) was carried out using a temperature programmed reaction(TPR) technique. On the temperature programmed studies, the effects of amounts of cerium and zirconium on the re-oxidation rate of partial reduced iron oxides were increased with increasing metal additives amount, but the rhodium amount showed little effect on the re-oxidation rate. On the thermal studies, the re-oxidation rates were enhanced with increasing temperature(300 $^{\circ}C$ < 350 $^{\circ}C$).

  • PDF

A Study on the metals corrosion in Air (대기 중 금속부식영향에 관한 연구)

  • 김윤신;박태술;문정숙;이상복;이용현
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.279-280
    • /
    • 2000
  • 대기 중 금속부식은 SO$_2$와 부유먼지, $O_3$, 산성비 등의 대기오염물질 및 농도와 그 밖의 이술, 빗물, 해수입자, 온도, 습도, 강우빈도 및 산도 등의 여러 가지 요인에 의해서 영향을 받지만, 특히 SO$_2$와 습도와 관련하여 금속부식에 영향을 미치고 있다. 금속 부식이란 금속의 산화상태 즉 산화ㆍ환원 반응으로 대기오염물질의 금속부식에 미치는 영향은 오염물질 자체가 부식에 직접관여 하는 것 외에 촉매 역할로써의 간접적 요인이 더욱 중요시되고 있으며, 오염물질의종류 및 농도와 지역적 특성에 의한 영향이 크다. (중략)

  • PDF

Electrochemical Behavior of Zn(II)-Bilirubin Complex in N,N-Dimethylformamide (N,N-Dimethylformamide 용액 중에서 Zn(II)-Bilirubin 착물의 전기화학적 거동)

  • Zun-Ung Bae;Heung-Lark Lee;Tae-Myung Park;Moo-Lyong Seo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.7
    • /
    • pp.672-676
    • /
    • 1993
  • The complexation of bilirubin with zinc(II) and copper(II) ions was studied spectrophotometrically. In the zinc(II)-bilirubin (Zn-BR) system, complex is formed, but the copper(II) ion oxidizes bilirubin to biliverdin and then to the further oxidation products. The electrochemical reduction behavior of ZN-BR complex has been investigated with DC polarography and cyclic voltammetry. The three polarographic waves were obtained for the reduction of ZN-BR complex in DMF solution. Thde reduction current of the third wave was diffusion current, but that of the first and the second waves contained a little kinetic current.

  • PDF

Removal of Nitrogen Oxides Using Hydrocarbon Selective Catalytic Reduction Coupled with Plasma (플라즈마가 결합된 탄화수소 선택적 촉매환원 공정에서 질소산화물(NOx)의 저감)

  • Ihm, Tae Heon;Jo, Jin Oh;Hyun, Young Jin;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2016
  • Low-temperature conversion of nitrogen oxides using plasma-assisted hydrocarbon selective catalytic reduction of (HC-SCR) was investigated. Plasma was created in the catalyst-packed bed so that it could directly interact with the catalyst. The effect of the reaction temperature, the shape of catalyst, the concentration of n-heptane as a reducing agent, the oxygen content, the water vapor content and the energy density on $NO_x$ removal was examined. $NO_x$ conversion efficiencies achieved with the plasma-catalytic hybrid process at a temperature of $250^{\circ}C$ and an specific energy input (SIE) of $42J\;L^{-1}$ were 83% and 69% for one-dimensional Ag catalyst ($Ag\;(nanowire)/{\gamma}-Al_2O_3$) and spherical Ag catalyst ($Ag\;(sphere)/{\gamma}-Al_2O_3$), respectively, whereas that obtained with the catalyst-alone was considerably lower (about 30%) even with $Ag\;(nanowire)/{\gamma}-Al_2O_3$ under the same condition. The enhanced catalytic activity towards $NO_x$ conversion in the presence of plasma can be explained by the formation of more reactive $NO_2$ species and partially oxidized hydrocarbon intermediates from the oxidation of NO and n-heptane under plasma discharge. Increasing the SIE tended to improve $NO_x$ conversion efficiency, and so did the increase in the n-heptane concentration; however, a further increase in the n-heptane concentration beyond $C_1/NO_x$ ratio of 5 did not improve the $NO_x$ conversion efficiency any more. The increase in the humidity affected negatively the $NO_x$ conversion efficiency, resulting in lowering the $NO_x$ conversion efficiency at the higher water vapor content, because water molecules competed with $NO_x$ species for the same active site. The $NO_x$ conversion efficiency increased with increasing the oxygen content from 3 to 15%, in particular at low SIE values, because the formation of $NO_2$ and partially oxidized hydrocarbon intermediates was facilitated.

Enhanced Synthesis of Active rPA in the Continuous Exchange Cell-free Protein Synthesis [CECF] System utilizing Molecular Chaperones (분자 샤페론을 사용한 연속확산식 무세포단백질 발현 시스템에서의 재조합 Plasminogen Activator의 효율적 발현)

  • Park, Chang-Gil;Kim, Tae-Wan;Choi, Cha-Yong;Kim, Dong-Myung
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.118-122
    • /
    • 2006
  • In this report, we describe that the use of GroEL/GroES-enriched S30 extract remarkably enhances the solubility and enzymatic activity of cell-free synthesized rPA, which requires the correct formation of 9 disulfide bonds for its biological activity. We found that the stable maintenance of redox potential is necessary, but not sufficient for the optimal expression of active rPA. In a control reaction without using additional molecular chaperones, most of the rPA molecules were aggregated almost instantly after their expression and thus failed to exhibit the enzymatic activity. However, by the use of GroEL/GroES-enriched extract, combined with IAM-treatment, approximately $30{\mu}g/ml$ of active rPA was expressed in the cell-free synthesis reaction. This result not only demonstrates the efficient production of complex proteins, but also shows the control and flexibility offered by the cell-free protein synthesis system.

A optimization study on the preparation and coating conditions on honeycomb type of Pd/TiO2 catalysts to secure hydrogen utilization process safety (수소 활용공정 안전성 확보를 위한 Pd/TiO2 수소 상온산화 촉매의 제조 및 허니컴 구조의 코팅 조건 최적화 연구)

  • Jang, Young hee;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.47-54
    • /
    • 2021
  • In this study, the performance of a honeycomb-type hydrogen oxidation catalyst to remove hydrogen in a hydrogen economy society to secure leaking hydrogen. The Pd/TiO2 catalyst was prepared based on a liquid phase reduction method that is not exposed to a heat source, and it was showed through H2-chemisorption analysis that it existed as very small active particles of 2~4 nm. In addition, it was found that the metal dispersion decreased and the active particle size increased as the reduction reaction temperature increased. It was meant that the active metal particle size and the hydrogen oxidation performance were in a proportional correlation, so that it was consistent with the hydrogen oxidation performance reduction result. The prepared catalyst was coated on a support in the form of a honeycomb so that it could be applied to the hydrogen industrial process. When 20 wt% or more of the AS-40 binder was coated, oxidation performance of 90% or more was observed under low-concentration hydrogen conditions. It was showed through SEM analysis that long-term catalytic activity can be expected by enhancing the adhesion strength of the catalyst and preventing catalyst desorption. It is a basic research that can secure safety in a hydrogen society such as gasification, organic resource, and it can be utilized as a system that can respond to unexpected safety accidents in the future.

Bioconversion of nitrogen oxides and reduction of ferric ions by probiotic lactic acid bacteria (프로바이오틱스 유산균에 의한 질소 산화물 전환 및 철 이온 환원활성)

  • Kim, Selim;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.785-791
    • /
    • 2021
  • Many lactic acid bacteria (LAB) have probiotic properties that exert various health benefits. In this study, the reduction potential of nitrogen oxide compounds and ferric ions by six LAB, including Lactobacillus kimchicus, L. lactis, L. casei, L. plantarum, L. rhamnosus GG, and Leuconostoc mesenteroides were evaluated. The L. kimchicus strain produced a substantial amount of nitrite reduced from nitrate added to the media, whereas the other five LAB strains did not. L. kimchicus also showed the most potent reducing activity of ferric to ferrous ions. However, the reduction potential of the autoclaved L. kimchicus was little pronounced. The scavenging activities of viable LAB or their cell lysates against different radicals were not consistent with the potency of the LAB's reducing ability. The present results indicate that L. kimchicus has a strong reduction potential for nitrogen oxides in viable status, and that this ability can be used as a probiotic property for various health benefits.

LiCl 감압 증류를 위한 폐쇄형 및 개방형 장치 기초 실험

  • Park, Byeong-Heung;Lee, Sang-Hun;Jeong, Myeong-Su;Jo, Su-Haeng;Heo, Jin-Mok
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.11a
    • /
    • pp.345-345
    • /
    • 2009
  • 전기화학적 환원 기술을 이용한 고온 용융염 전해환원의 결과 생산되는 금속전환체는 다공성 특성에 의해 전해환원의 매질인 용융염을 함유하게 된다. 전해환원과 후속 전기화학 공정인 전해정련의 전해질은 각각 LiCl과 LiCl-KCl 공융염으로 상이하기 때문에 이렇게 금속전환체에 포함된 LiCl 염이 동반되어 전해정련 공정에 도입될 경우 전해정련 공정의 공융염 조성을 어긋나게 한다. 이에 따라 금속전환체의 잔류염은 효과적으로 제거되어야 하며 공정으로 감압 증류에 의한 잔류염 제거 공정이 고려되고 있다. LiCl은 증기압이 비교적 낮기 때문에 감압의 고온 조건이 공정에 필요하다. 그러나 상평형도 분석 결과 전해환원 공정에서 산화물을 담아 음극으로 사용되어 환원된 금속전환체와 함께 도입되는 SUS 재질의 바스켓과 사용후핵연료 금속전환체의 주된 원소인 우라늄과는 공융할 수 있기 때문에 LiCl 증발 온도는 $720^{\circ}C$ 이하로 유지되어야 한다. 이와 같은 조건에서 LiCl 증발 속도를 높이기 위해서는 감압 조건이 필수적이다. 본 연구에서는 감압조건에서 LiCl 휘발 실험을 위해 폐쇄형 및 개방형 반응기를 제작하여 압력 조건 및 Ar 유량 등에 따른 LiCl 휘발율을 측정하였다. 증발된 LiCl은 일정 감압 조건에서 분말형으로 냉각부위에 회수 될 수 있었으나 완전 진공 조건에서는 결정형으로 냉각 부위에 응축되는 것으로 확인 되었으며 일정 진공 조건에서는 Ar 유량에 따라 증발량이 의존하지 않는 것으로 나타났다. 연구 결과 증발염의 취급 빛 이송을 위해 분말형 회수를 목표로 설정할 수 있었으며 공정조건으로 일정 수준의 감압 조건을 제시하였다. 이 후 후속 연구로 장치의 대형화 및 증발 속도 향상을 위한 추가적인 연구가 계획되어 있으며 연구 결과에 기초하여 공학규모 파이로 공정 시설인 PRIDE에 도입될 장치의 기초 설계 자료를 생산할 예정이다.

  • PDF

Microbial styrene monooxygenase-catalyzed asymmetric synthesis of enantiopure styrene oxide derivatives (미생물 유래 Styrene monooxygenase를 이용한 광학활성 styrene oxide 유도체의 비대칭합성)

  • Lee, Eun-Yeol;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.239-245
    • /
    • 2009
  • Enantiopure styrene oxide derivatives are versatile building blocks for the synthesis of enantiopure pharmaceuticals. Styrene monooxygenase (SMO) catalyzes an asymmetric addition of an oxygen atom into a double bond of vinylaromatic compounds. SMO is a commercially potential biocatalyst to synthesize a variety of enantiopure epoxides with high enantiopurity and recovery yield. In this paper development of SMO biocatalyst and commercial feasibility of SMO-catalyzed asymmetric synthesis of enantiopure stylers oxide derivatives are reviewed.