• Title/Summary/Keyword: 산화 환원 반응

Search Result 792, Processing Time 0.03 seconds

광물질(V) -유황(S)

  • 최진호
    • KOREAN POULTRY JOURNAL
    • /
    • v.24 no.9 s.275
    • /
    • pp.163-165
    • /
    • 1992
  • 어떤 관점에서 유황은 산소와 비슷한 화학적 성질을 가진다. 만일 태고의 지구상의 대기에 산소가 축적되기 전에 어떤 종류의 혐기성 생물이 존재하였다면 유황은 매우 중요한 역할을 담당하였을 것으로 생각된다. 오늘날 존재하는 소위'유황박테리아'는 아마도 유화수소($H{_2}S$)가 풍부했던 태고의 대기에서 존재했던 생물체의 초기 형태일지도 모른다. 뿐만아니라 오늘날의 고등 동식물에서도 각종 유황을 함유하는 화합물들(특히-SH기를 함유하는 화합물)은 각종 산화-환원 반응에 조효소로서 중요한 기능을 수행하고 있다.

  • PDF

A Study on the Removal of Phosphorus from Wastewater by Redox Reaction of Cu-Zn metal alloy (Cu-Zn 금속합금의 산화 환원 반응을 이용한 수중 탈인처리에 관한 연구)

  • Kim, Tae-Kyeong;Kim, Jong-Hwa;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.78-84
    • /
    • 2015
  • The purpose of this study is to evaluate the removal efficiency of phosphorus from synthetic waste water by reduction and oxidation reaction of Cu-Zn metal alloy. Cu-Zn metal alloy applied in this study is composed of 40% of Zn and 60% of Cu, which is so called Muntz metal. And the fibrous type of metal alloy has approximately $200{\mu}m$ of thickness. Metal is oxidized in an aqueous solution to generate electron and metal ion. The mechanism of phosphate treatment is co-precipitation of metal ion and phosphorous ion at various pH and temperature. The treatment efficiency showed the maximum at a one cycle treatment. This result means that the surface area of reaction material is sufficient enough to get reaction equilibrium. Experiment is conducted at various pH from 5 to 9, and showed the maximum efficiency at pH 8. Phosphorous is dominated as a type of $H_2PO_4{^-}$ and $HPO_4{^{2-}}$ at this pH condition. We could not consider the temperature effect independently, because phosphorous removal efficiency showed such a complex mechanism. We could get high efficiency at lower temperature in this research.

Physicochemical Properties of MnO2 Catalyst Prepared via Hydrothermal Process and its Application for CO Oxidation (수열방법으로 합성된 이산화망간의 물리화학적 특성과 일산화탄소 산화반응)

  • Lee, Young-Ho;Jeon, Su A;Park, Sang-Jun;Youn, Hyun Ki;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.248-256
    • /
    • 2015
  • MnO2 was prepared by a hydrothermal process method in the range of 120-200 ℃ and 0.5-5 h, calcined at 300 ℃ after induction of precipitation using KMnO4 and MnCl2・4H2O, and its catalytic activity was compared for CO oxidation. The catalysts were characterized using by X-ray diffraction, N2-sorption, scanning electron microscopy, and temperature programmed reduction of H2 or CO. The crystalline structure of pure α-MnO2 or hybrid α/β-MnO2 was controlled by the preparation conditions. The pure α-MnO2 showed better catalytic activity and thermal stability than hybrid α/β-MnO2. Especially, α-MnO2 prepared at 150 ℃ for 1 h has the highest specific surface area 214 m2 g-1, reducibility and labile lattice oxygen species analyzed by H2, CO-TPR, respectively. It also showed the best CO oxidation activity in both conditions of temperature programmed and isothermal reaction. The results came from the physicochemical properties of catalysts like the crystalline structure, specific surface area, reducibility and lattice oxygen species, and which are correlated with catalytic performance.

Removal of SO2 over Binary Nb/Fe Mixed Oxide Catalysts (이성분계 Nb/Fe 혼합산화물 촉매에 의한 아황산가스의 제거)

  • Chung, Jong Kook;Lee, Seok Hee;Park, Dae Won;Woo, Hee Chul
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.87-94
    • /
    • 2006
  • The reduction of $SO_2$ to elemental sulfur by CO over a series of iron niobate with nominal Nb/Fe atomic ratios of 1/0, 10/1, 5/1, 1/1, 1/5, 1/10 and 0/1 was studied with a flow fixed-bed reactor. Strong synergistic phenomena in catalytic activity and selectivity were observed for the iron niobate catalysts, and the best catalytic performance was observed for the catalyst with Fe/Nb atomic ratio of 1/1. The active phase of the activated iron niobate catalysts was identified to be $FeS_2$ using XRD and XPS. Selective reduction of $SO_2$ by CO was followed by the COS intermediate mechanism.

  • PDF

Correlation between Characteristics of SOD in Coastal Sewage and Predictive Factor (연안 저질 SOD의 특성과 유발 영향인자에 대한 상관관계)

  • Kim, Beom-Geun;Khirul, Md Akhte;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.596-604
    • /
    • 2019
  • This study conducted a sediment culture experiment to investigate the effects of sediment oxygen demand (SOD) and environmental factors on sediment and water quality. We installed a leaching tank in the laboratory, cultured it for 20 days, and analyzed the relationship between P and Fe in the sediment. As a result, the dissolved oxygen of the water layer decreased with time, while the oxidation-reduction potential of the sediment progressed in the negative direction to form an anaerobic reducing environment. The SOD was measured to be 0.05 mg/g at the initial stage of cultivation and increased to 0.09 mg/g on the 20th day, indicating the tendency of increasing consumption of oxygen by the sediment. The change is likely to have caused by oxygen consumption from biological-SOD, which is the decomposition of organic matter accumulated on the sediment surface due to the increase of chl-a, and chemical-SOD consumed when the metal-reducing product produced by the reduction reaction is reoxidized. The correlation between SOD and causality for sediment-extracted sediments was positive for Ex-P and Org-P and negative for Fe-P. The analysis of the microbial community in the sediment on the 20th day showed that anaerobic iron-reducing bacteria (FeRB) were the dominant species. Therefore, when the phosphate bonded to the iron oxide is separated by the reduction reaction, the phosphate is eluted into the water to increase the primary productivity. The reduced substance is reoxidized and contributes to the oxygen consumption of the sediment. The results of this study would be useful as the reference information to improve oxygen resin.

Effect of Containing Promoter on SCR Catalysts (SCR 촉매에 포함된 조촉매 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.474-481
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for approximately 95% of automobiles in use. To meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is increasing continuously. As diesel engines have high power and good fuel economy in addition to less CO2 emissions, their market share is increasing not only in commercial vehicles, but also in passenger cars. Because of the characteristics of the diesel combustion, however, NOx is generated in localized high-temperature combustion regions, and particulates are formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for the after-treatment of exhaust gas to reduce NOx in diesel vehicles. This study examined the effect of a containing promoter on SCR catalysts to cope with the severe exhaust gas regulation. The de-NOx performance of the Mn-SCR catalyst was the best, and the de-NOx performance was improved as the ion exchange rate between Mn ion and Zeolyst was good and the activation energy was low. The de-NOx performance of the 7Cu-15Ba/78Zeoyst catalyst was 32% at $200^{\circ}C$ and 30% at $500^{\circ}C$, and showed the highest performance. The NOx storage material of BaO loaded as a promoter was well dispersed in the Cu-SCR catalyst and the additional de-NOx performance of BaO was affected by the reduction reaction of the Cu-SCR catalyst. Among the three catalysts, the 7Cu-15Ba/Zeolyst SCR catalyst was resistant to thermal degradation. The same type of CuO due to thermal degradation migrates and agglomerates because BaO reduces the agglomeration of the main catalyst CuO particles.

The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode (ITO 전극 위에 고정된 니켈 나노 입자를 이용한 무효소 혈당센서에 관한 전기화학적인 연구)

  • Oh, In-Don;Kim, Samantha;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.164-171
    • /
    • 2014
  • A highly sensitive and selective non-enzymatic glucose sensor has gained great attention because of simple signal transformation, low-cost, easily handling, and confirming the blood glucose as the representative technology. Until now, glucose sensor has been developed by the immobilization of glucose oxidase (GOx) on the surface of electrodes. However although GOx is quite stable compared with other enzymes, the enzyme-based biosensors are still impacted by various environment factors such as temperature, pH value, humidity, and toxic chemicals. Non-enzymatic sensor for direct detecting glucose is an attractive alternative device to overcome the above drawbacks of enzymatic sensor. Many efforts have been tried for the development of non-enzymatic sensors using various transition metals (Pt, Au, Cu, Ni, etc.), metal alloys (Pt-Pb, Pt-Au, Ni-Pd, etc.), metal oxides, carbon nanotubes and graphene. In this paper, we show that Ni-based nano-particles (NiNPs) exhibit remarkably catalyzing capability for glucose originating from the redox couple of $Ni(OH)_2/NiOOH$ on the surface of ITO electrode in alkaline medium. But, these non-enzymatic sensors are nonselective toward oxidizable species such as ascorbic acid the physiological fluid. So, the anionic polymer was coated on NiNPs electrode preventing the interferences. The oxidation of glucose was highly catalyzed by NiNPs. The catalytically anodic currents were linearly increased in proportion to the glucose concentration over the 0~6.15 mM range at 650 mV versus Ag/AgCl.

A Treatment of Acid Mine Drainage Using the Rice Stalk and Cow Manure (볏짚 및 우분을 이용한 산성광산배수 정화)

  • 정영욱;민정식;이현주;권광수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.116-121
    • /
    • 1997
  • Pilot wetland reactor systems to test acid mine drainage treatment efficiencies for metals were designed and operated at the Dalsung mine and surveyed the operating problems. pH and Eh (redox potential) were measured in situ and anayses of Cd, Pb, As, Zn, Cu, Fe, Al and Mn were carried out in the laboratory. Maximum metal removal efficiencies of the reactor containing the rice stalks, the cow manure and limestones were that Cu, Zn, Fe, Cd, Al, Mn and Pb were lowered by 98%, 100%, 99%, 100%, 97%, 61% and 100%, respectively and at that time the pH and Eh of the effluents from the reactor were 6 and about -300 mV. However, the redox potential was raised and removal of metal elements except aluminium was decreased with operation time. It suggests that the reduced condition is very important for the metal removal. During the operation, problems such as scaling in pipes and volume change of the substrate within the reactor occurred, which were preventing the flow of main drainage in pipes and reactor.

  • PDF