• 제목/요약/키워드: 산화 탄소나노튜브

검색결과 120건 처리시간 0.03초

태양열 집열기 적용을 위한 순수 물과 에탄올 탄소나노유체의 특성 비교 연구 (A Comparative Study on the Characteristics of the Pure water and Ethanol Carbon Nanofluids for Applying Solar Collector)

  • 안응진;박성식;천원기;박윤철;김남진
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.194-199
    • /
    • 2012
  • In this study, for increasing the efficiency of solar collector, the thermal conductivities and viscosities of the pure water and ethanol oxidized multi-walled carbon nanofluids were measured. Nanofluids were manufactured by ultra-sonic dispersing oxidized multi-walled carbon nanotubes(OMWCNTs) in the pure-water and ethanol at the rates of 0.0005 ~ 0.1 vol%. the Thermal conductivities and viscosities of manufactured nanofluids were measured at the low temperature($10^{\circ}C$), the room temperature($25^{\circ}C$) and the high temperature($70^{\circ}C$). For measuring thermal conductivity and viscosity, we used Transient Hot-wire Method and Rotational Digital Viscometer, respectively. As a result, under given temperature conditions, thermal conductivity of the 0.1 vol% pure-water nanofluid improved 7.98% ($10^{\circ}C$), 8.34% ($25^{\circ}C$), and 9.14% ($70^{\circ}C$), and its viscosity increased by 37.08% ($10^{\circ}C$), 33.96% ($25^{\circ}C$) and 21.64% ($70^{\circ}C$) than the base fluids. Thermal conductivity of the 0.1 vol% ethanol nanofluids improved 33.72% ($10^{\circ}C$), 33.14% ($25^{\circ}C$), and 32.36% ($70^{\circ}C$), and its viscosity increased by 37.93% ($10^{\circ}C$), 31.92% ($25^{\circ}C$) and 29.42% ($70^{\circ}C$) than the base fluids.

  • PDF

Role of PEDOT:PSS in Doping Stability of Reduced Graphene Oxide/Single Walled Carbon Nanotubes-Based Tranparent Conductive Electrodes Hybrid Films with AuCl3 Doping

  • 이병룡;김수진;김희동;윤민주;전동수;김태근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.383-383
    • /
    • 2014
  • 최근 디스플레이, 태양전지 그리고 touch screen panels 등 optoelectronic 장치의 시장이 성장함에 따라 투명전극의 수요가 증가하고 있다. Indium tin oxide (ITO)의 좋은 특성 때문에 주로 투명전극에 많이 사용되고 있다. 그러나 화학적 안정성이 떨어지고, 휘어질 때 특성저하가 심하여 금속나노와이어, 탄소나노튜브, 전도성폴리머, 그리고 그래핀 등의 다른 투명전극의 연구가 활발히 진행되고 있다. 그 중에서 그래핀은 높은 전자 이동도(200000 cm2v-1s-1)와 휘어져도 전기적 크게 변하지 않는 특성 때문에 유망한 투명 전도성 전극 (Transparent Conductive Electrodes, TCEs)으로 연구되어왔다. 또한 다양한 속성 가운데, 높은 광 투과성은 그래핀의 가장 큰 장점이다 [1]. 최근, 화학 기상 증착 (Chemical Vapor Deposition, CVD) 등 다양한 제조 방법이 대량 생산을 위해 개발되었다. 그러나 이 방법은 비용이 많이 들며, 과정이 상당히 복잡하고 높은 온도 (${\sim}1000^{\circ}C$)를 필요로 한다. 따라서 용매 기반의 환원된 그래핀 산화물(Reduced Graphene Oxides, RGOs)이 최근 주목 받고 있다. 그러나 RGOs의 면저항이 높아 전극으로서 사용이 제한된다. 따라서 전기적 특성을 향상시키는 방법으로 단일 벽 탄소 나노튜브 (Single-Walled Carbon Nanotubes, SWNTs)를 혼합하거나 화학적 도핑을 통하여 면저항을 크게 향상시키는 연구가 활발히 진행되고 있다. 그러나 이런 화학적 도핑의 경우 박막이 공기 중에 직접 산소나 습기와 반응하여 전기적 특성이 저하되는 문제점을 가지고 있다 [2]. 이러한 문제를 해결하기 위해 AuCl3을 도핑한 박막에 내열성 및 내광성 등의 화학적 안정성이 뛰어난 PEDOT:PSS를 코팅하여 필름의 공기중의 노출을 막아 줌으로써 도핑의 안전성 및 전기적 특성을 최적화하였다. 본 연구에서는 간단한 dip-coating방법을 사용하여 4개의 RGO/SWNTs 박막을 흡착하였다. 다음으로 AuCl3를 도핑하여 면저항 $4.909K{\Omega}$, $4.381K{\Omega}$인 두 개의 샘플의 시간과 온도에 따른 면저항의 변화를 확인하였다. 그리고 필름의 도핑 안전성을 향상 시키기 위해 AuCl3를 도핑한 필름 위에 전도성 폴리머 PEDOT:PSS 코팅하여 면저항 $886.1{\Omega}$, $837.5{\Omega}$인 두 개의 샘플의 시간과 온도에 따른 면저항의 변화를 확인하였다. AuCl3 도핑된 필름의 경우 공기 중에 150시간 노출 시 72%의 면저항 증가가 발생하였지만 PEDOT:PSS가 코팅된 필름의 경우 5%의 면저항 증가가 나타나 확연한 차이를 보였다. 또한 AuCl3 도핑한 필름의 경우 $150^{\circ}C$에서 60시간동안 공기중에 노출되었을 때 525%의 면저항 증가가 발생하였지만 PEDOT:PSS가 코팅된 필름의 경우 58%의 면저항 증가를 나타내었다. 이것은 PEDOT:PSS가 passivation역할을 하여 필름이 공기에 노출된 부분을 막아주어 도핑된 필름의 면저항의 변화를 줄여 주었음을 알 수 있다.

  • PDF

폴리이온복합체를 이용하여 글루코스 산화효소를 고정화한 바이오전지용 효소전극 제조 (Preparation of Enzyme Electrodes for Biofuel Cells Based on the Immobilization of Glucose Oxidase in Polyion Complex)

  • 린 타이 미 그웬;이남;윤현희
    • 공업화학
    • /
    • 제24권1호
    • /
    • pp.99-103
    • /
    • 2013
  • 유리화탄소전극 위에 탄소나노튜브(CNT), 전하전달체(CTC), 글루코스 산화효소(GOx), 폴리이온복합체(PIC, poly-L-lysine hydrobromiderhk과 poly(sodium 4-styrenesulfonate) 혼합물)를 순차적으로 도포하여 글루코스/산소 바이오전지용 효소전극을 제조하였다. 또한, CNT, bilirubin oxidase (BOD), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 그리고 PIC 등의 층으로 제조한 전극을 바이오캐쏘드로 사용하여 바이오전지를 제조하였다. CNT와 CTC가 전극의 성능에 미치는 영향을 조사하였으며, 글루코스농도 5, 20, 200 mM에서 각각 3.6, 10.1, $46.5{\mu}W/cm^2$의 최대전력밀도를 나타내었으며, 본 연구에서 제시한 전극이 바이오전지 및 바이오센서의 개발에 활용될 수 있다는 것을 보여주었다.

초소형 실리콘 신경탐침의 임피던스 특성 향상 연구

  • 이수진;이이재;윤효상;박재영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.427-428
    • /
    • 2014
  • 서론: 최근 전세계적인 고령화 진행에 따른 뇌졸중, 파킨슨병, 알츠하이머병 등과 같은 각종 뇌관련 질환에 대한 관심이 더욱 높아지고 있으며 다양한 뇌질환 치료를 위하여 뇌 신경 신호의 정확한 검출 대한 연구가 학계에서 활발히 진행되고 있다. 효과적인 뇌 신경 신호 검출을 위해서는 세포조직의 손상을 최소화 할 수 있는 초소형 신경탐침 및 극소 면적내에서 극대화된 검출 전극이 구현되어야 한다. 그러나, 극소 면적내에 구성된 소면적 전극을 통한 신호 검출은 전극 계면에서의 높은 임피던스를 야기시켜 정밀한 신경신호 검출에 어려움을 만든다. 따라서, 뇌 신경 신호 검출시 전극 계면에서의 낮은 임피던스를 검출하기 위한 다결정실리콘, 이리듐 산화막, 탄소나노튜브와 같은 다양한 전극 소재를 이용한 신경탐침 연구가 제안되어 왔다. 본 연구에서는 극소화된 전극면적과 신경세포 계면에서의 저 임피던스 신경신호 검출을 위하여 비이온성 계면활성제와 전해도금을 이용하여 높은 거칠기값을 갖는 나노동공 백금층을 검출 전극으로 활용하였다. 실험 결과: 제작된 신경탐침의 몸체는 실리콘으로 이루어지며, 탐침 끝단에는 신호 측정을 위한 나노동공 백금층을 갖는 전극들이 집적되어 있다. Fig. 1 는 제작된 나노동공 백금을 갖는 신경탐침의 이미지 (a), SEM (b), TEM (c), FESEM (d) 측정결과를 보여준다. 0.9 %의 NaCl 용액에서 제작된 신경탐침의 계면임피던스 및 위상각 변화에 대한 측정결과가 Fig. 2에 나타나 있다. 1.2 kHz 주파수에서 $942.6K{\Omega}$ ($0.029{\Omega}cm^2$, $3.14{\mu}m^2$)로 극대화된 실표면적을 갖는 나노동공 백금층에 의하여 매우 낮은 임피던스 특성을 보인 것으로 판단된다. 또한 제작된 신경탐침은 위상각이 $-82.9^{\circ}$로서 캐패시터와 같은 역할을 하고 있다고 예상할 수 있었으며 $4.6mFcm^{-2}$의 축전용량값을 보였다. Fig. 3는 1 M의 황산용액에서 나노동공백금층이 형성된 신경탐침 전극과 형성 전의 전기화학적 표면변화를 비교분석한 결과로서 나노동공 백금층의 형성 전/후의 전류응답 특성이 상이하게 나타났다. 나노동공 백금층의 실표면적 극대화로 인한 전류응답수치 또한 크게 향상 되었으며, 0~-0.25 V 영역에서의 수소 흡착에 따른 환원곡선은 전형적인 백금 특성을 보여주는 결과로 판단 할 수 있다. Table 1는 기존에 연구되었던 신경탐침들과 본 연구에서 제작된 나노동공 백금을 갖는 신경탐침의 임피던스와 캐패시턴스 특성을 비교한 결과이다. 결론: 본 연구에서는 실리콘 신경탐침 끝단에 집적된 전극상에 전해도금법을 이용하여 높은 거칠기값을 갖는 나노동공 백금층을 형성하고 전극 계면상의 낮은 임피던스를 검출을 하였다. 나노동공 백금층을 갖는 신경탐침은 순환전압전류법을 통해 극대화된 실표면적을 극대화를 확인할 수 있었으며, 극대화된 검출 전극면은 저 임피던스 측정에 용이함을 실험을 통해서 증명할 수 있었다. 따라서, 높은 거칠기값의 나노동공 백금층은 초소형화된 신경탐침상에 집적되는 전극면적소형화와 다수의 전극 구현에 효과적일 것으로 판단되며 보다 정확한 신경신호 검출을 통한 뇌질환의 명확한 이해에 유망할 것으로 판단된다.

  • PDF

산화아연과 단중벽 탄소나노튜브 복합체의 수소가스 감응 특성 (Hydrogen Sensing Properties of ZnO-SWNTs Composite)

  • 정진연;송혜진;강영진;오동훈;정혁;조유석;김도진
    • 한국재료학회지
    • /
    • 제18권10호
    • /
    • pp.529-534
    • /
    • 2008
  • The hydrogen gas sensing properties of a zinc oxide nanowire structure were studied. Porous zinc oxide nanowire structures were fabricated by oxidizing zinc deposited on a single-wall carbon nanotube (SWNT) template. This revealed a porous ZnO-SWNT composite due to the porosity in the SWNT film. The gas sensing properties were compared with those of zinc oxide thin films deposited on SiO2/Si substrates in sensitivity and operating temperature. The composite structure showed higher sensitivity and lower operating temperature than the zinc oxide film. It showed a response even at room temperature while the film structure did not.

실란화 반응으로 표면 개질된 다중벽 탄소나노튜브(MWCNTs)와 Methyl Methacrylate의 유화중합을 통한 MWCNTs/Poly(methyl methacrylate) 복합 입자 제조 및 그 형태학적 특성 (Preparation of MWCNTs/Poly(methyl methacrylate) Composite Particles via the Emulsion Polymerization of Methyl Methacrylate Using MWCNTs Modified by Silanization Reaction and Their Morphological Characteristics)

  • 권재범;박성환;김성훈;조지은;한창우;하기룡
    • 폴리머
    • /
    • 제39권2호
    • /
    • pp.329-337
    • /
    • 2015
  • 본 연구에서는 다중벽 탄소나노튜브(MWCNTs)를 질산과 황산의 혼산으로 산화시켜 표면에 카르복시기를 도입 후, $SOCl_2$와 1,4-butanediol을 사용하여 MWCNT-OH를 제조하였다. 제조된 MWCNT-OH는 3-methacryloxypropyltrimethoxylsilane(MPTMS)와 실란화 반응으로 methacrylate기가 도입된 MWCNT-MPTMS를 제조하였다. MWCNT-MPTMS와 methyl methacrylate(MMA)를 사용하여 유화중합법으로 MWCNT-MPTMS/PMMA 복합 입자를 제조하였다. 음이온 계면 활성제인 sodium dodecylbenzene sulfonate(SDBS)를 사용하여 유화중합한 MWCNT-MPTMS/PMMA는 균일한 입도, 좁은 입도분포 및 계면에서의 화학결합으로 인하여 $T_g$가 순수 MWCNT를 사용하여 중합한 시료보다 $3.4^{\circ}C$ 높아짐을 확인하였다.

산화전극 결합제로서 나피온용액에 혼합된 에폭시가 미생물연료전지의 성능에 미치는 영향 (Effect of Epoxy Mixed with Nafion Solution as an Anode Binder on the Performance of Microbial Fuel Cell)

  • 송영채;김대섭;우정희
    • 대한환경공학회지
    • /
    • 제36권1호
    • /
    • pp.1-6
    • /
    • 2014
  • 팽창흑연과 탄소나노튜브를 이용한 복합 산화전극을 나피온용액에 다양한 비율로 에폭시를 혼합한 결합제를 이용하여 제작하였으며, 산화전극 결합제에 함유된 에폭시량이 미생물연료전지의 성능에 미치는 영향을 회분식 실험을 통하여 조사하였다. 산화전극 결합제에 에폭시의 함량이 증가함에 따라 산화전극 구성 물질들의 물리적 부착력은 점차 증가하였으나, 활성화저항과 오옴저항의 증가로 인한 내부저항이 증가하였다. 산화전극 결합제로 에폭시를 혼합하지 않고 나피온용액 만을 사용한 대조구의 경우 $1,892mW/m^2$에 달하였으나 산화전극 결합제에 에폭시 함량이 증가함에 따라 미생물연료전지의 최대전력밀도는 점차 감소하였다. 산화전극 결합제에 에폭시함량이 50%일 때 최대전력밀도는 $1,425mW/m^2$로서 대조구의 75.3%까지 감소하였으나, 고가의 나피온용액 사용량을 감소시키고 산화전극 결합제의 물리적 부착력을 높일 수 있다는 측면에서 고려할 때 나피온용액과 에폭시를 같은 비율로 혼합한 물질은 산화전극결합제로서의 좋은 대안이 될 수 있는 것으로 판단된다.

고성능 리튬-황 전지를 위한 금속산화물을 첨가한 탄소나노튜브 프리스탠딩 전극 (Metal Oxides Decorated Carbon Nanotube Freestanding Electrodes for High Performance of Lithium-sulfur Batteries)

  • 신윤정;정현서;김은미;김태윤;정상문
    • Korean Chemical Engineering Research
    • /
    • 제61권3호
    • /
    • pp.426-438
    • /
    • 2023
  • 차세대 전지로 주목받는 리튬-황 전지는 높은 에너지 밀도를 갖는 반면, 황의 절연 특성, 셔틀 현상 그리고 부피팽창으로 인하여 상용화에 어려움이 있다. 본 연구에서는 경제적이고 간단한 진공여과 방법으로 바인더와 집전체가 없는 프리스탠딩 전극을 제조하였고 탄소나노튜브(CNT)를 황의 전기전도도 향상을 위하여 사용하였다. 여기서 CNT는 집전체와 도전재 역할을 동시에 수행하였다. 추가로 리튬폴리설파이드의 흡착에 용이한 금속산화물(MOx, M=Ni, Mg)을 CNT/S 전극에 첨가함으로써 리튬-황 전지의 셔틀반응을 억제하였다. MOx@CNT/S 전극은 금속산화물을 도입하지 않은 CNT/S 전극에 비해 높은 용량 특성과 사이클 안정성을 나타내었으며, 이는 금속산화물의 우수한 리튬폴리설파이드 흡착 특성으로 인하여 황 활물질의 손실을 억제한 결과이다. MOx@CNT/S 전극 중에서 NiO를 도입한 NiO@CNT/S 전극은 1 C에서 780 mAh g-1의 높은 방전용량을 나타내었고 200 사이클 후 134 mAh g-1으로 극심한 용량 감소가 나타났다. MgO@CNT/S 전극은 비록 초기 사이클에 544 mAh g-1의 낮은 방전용량을 나타냈지만, 200 사이클까지 용량을 90% 유지하는 우수한 사이클 안정성을 나타내었다. 고용량과 사이클 안정성 확보를 위하여 Ni:Mg를 0.7:0.3의 비율로 혼합한 Ni0.7Mg0.3O@CNT/S 전극은 755 mAh g-1 (1 C)의 초기 방전용량과 200 사이클 후에도 90% 이상의 용량 유지율을 나타내었다. 따라서 이원 금속산화물의 CNT/S 프리스탠딩으로의 적용은 고용량 특성뿐만 아니라 가장 큰 문제인 리튬폴리설파이드의 용출을 효과적으로 개선하여 경제적이고 고성능 리튬-황 전지의 개발이 가능함을 시사한다.

니켈을 함유한 콜타르 피치 결합제를 이용한 미생물연료전지 산화전극 성능개선 (Improvement of Anodic Performance by Using CTP Binder Containg Nickel)

  • 윤형선;송영채;최태선
    • 대한환경공학회지
    • /
    • 제37권9호
    • /
    • pp.499-504
    • /
    • 2015
  • 팽창흑연과 탄소나노튜브를 이용한 산화전극을 CTP에 Ni을 혼합한 결합제로 제작하였으며, 산화전극에 CTP와 Ni을 혼합한 결합제와 Nafion 결합제를 대조구로 미생물연료전지의 성능에 미치는 영향을 회분식 실험을 통하여 조사하였다. 산화전극 제작에 사용된 CTP 양이 적을수록, Ni 함량이 증가할수록 산화전극 표면에 부착성장한 미생물량이 증가하였으며, 내부저항이 감소하였다. CTP 4 g과 Ni 0.2 g을 혼합한 결합제로 제작한 산화전극의 경우 최대전력밀도는 $731.8mW/m^2$, 내부저항은 $146.19{\Omega}$이다. 대조구인 Nafion결합제로 제작한 산화전극와 비교하여 최대전력밀도는 23.68% 컸으며, 내부저항은 33.82% 낮았다. 따라서, CTP와 Ni을 혼합한 물질은 저렴하고 효율이 높은 미생물연료전지의 산화전극결합제로서 좋은 대안이 될 수 있다.

산화철-탄소나노튜브 나노복합체의 암모니아 가스센서 응용 (Iron Oxide-Carbon Nanotube Composite for NH3 Detection)

  • 이현동;김다혜;고다애;김도진;김효진
    • 한국재료학회지
    • /
    • 제26권4호
    • /
    • pp.187-193
    • /
    • 2016
  • Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with $500^{\circ}C/2h$ oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.