• Title/Summary/Keyword: 산화 슬래그

Search Result 121, Processing Time 0.023 seconds

Engineering Properties of Non Shrinkage Grouter According to Replacement Ratio of Rapidly Cooled Electric Arc Furnace Oxidizing Slag (급냉 전기로 산화슬래그 대체율에 따른 무수축 그라우터의 공학적 특성)

  • Sung, JongHyun;Sun, Jung Soo;Hong, Sung;Kim, JinMan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.318-320
    • /
    • 2013
  • The spherical bead manufactured by rapidly cooling process shows high density of 3.64g/㎤, high unit volume weight of 2.6kg/l, and high solid volume of 71%. When it applies to the grouter, it is possible to obtain even high fluidity with only a small amount. This study, focusing the grouter using a rapidly-cooled electric arc furnace oxidizing slag(RC-EAFS), deals with the properties of flow and setting time in fresh state, compressive strength and length variation at 1, 3, 7 and 28 curing day in hardened state. As the results, even though the grouter with RC-EAFS shows comparative low strength, it will be possible to development the competitive product due to the properties of increasing flow and low cost.

  • PDF

Comparison of X-ray Shielding Performance according to the Weight of unit volume of Heavy Weight Concrete Utilizing Electric Arc Furnace Oxidizing Slag. (전기로 산화슬래그 골재를 활용한 중량 콘크리트의 단위 용적 중량 변화에 따른 X-선 차폐 성능 비교)

  • Lim, Hee Seob;Lee, Han Seung;Choi, jae Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.35-36
    • /
    • 2013
  • Electric arc furnace oxidizing slag from massively produced steel slag has been used in road bases and subbases, hot mix asphalt, and landfill. Electric arc furnace oxidizing slag contains iron (15%~30%) and has a high density of 3.0~3.7 ton/m3. Depending on the type and amount of concrete aggregates, the radiation-shielding characteristics can vary. Therefore, aggregates of electric arc furnace oxidizing slag can be considered for the production of radiation-shielding concrete. The experimental design of this study is experiments on Compressive strength experiments, X-ray irradiation experiments, and experiments related to the unit volume weight were carried out on hardened concrete. This experiment compared the performance evaluation of radiation shielding of concrete using electric arc furnace oxidizing slag.

  • PDF

A Study on the EMP Shielding and Physical Properties of Concrete using Electric Arc Furnace Oxidizing Slag aggregate (전기로산화슬래그 골재를 사용한 콘크리트의 EMP 차폐 및 물리적 특성에 관한 연구)

  • Min, Tae-Beom;Lee, Min-Seog;Kim, Hyeong-Cheol;Kim, Jae-Young;Choi, Hyun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.177-178
    • /
    • 2020
  • The EMP slip rate was compared with the general concrete using the electric arc furnace slag as an aggregate. Experimental results show that the shielding rate of concrete specimens using electric arc furnace slag increases. It is considered that the shielding rate is increased due to the high Fe content in the components of the electric arc furnace slag aggregate.

  • PDF

Unconfined Compressive Strength of Reduced Slag-Mixed Clay (환원슬래그 혼합점토의 일축압축강도 특성)

  • Cho, Minjae;Yoon, Yeowon;Kim, Jaeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.33-39
    • /
    • 2012
  • With the increase of steel production research interest on the recycling of slag as a by-product also increases steadily. Currently in Korea a lot of researches on blast-furnace slag have been made. However, the researches on the steel slag have been rarely made. Also, a research of steel slag, especially the use of oxidation furnace slag as aggregates for concrete progress, is performing actively, but the research results on the furnace slag are almost nothing. Recently, the research about the furnace slag as backfill material and embankment material confirmed the possibility of the clay soil amendment. Therefore, the object of this study is to review the possibility as civil engineering materials for soil improvement and to find the optimum mixture ratio of furnace slag. This research analyzed the ingredient component of the reduced slag by SEM, XRF, XRD tests and examined the strength increase using unconfined compression tests when the clay and reduced slag are mixed each other. Through this test, the definite strength increase is confirmed according to the mixture of the reduced slag and the possibility of soil improvement is also confirmed based on this result. The object of the study is both utilizing the by-product for civil engineering purpose and effective recycling by the application of the furnace slag for soil improvement.