• Title/Summary/Keyword: 산화질소생성

Search Result 232, Processing Time 0.042 seconds

Effects of Gamma Irradiation on Quality Characteristic and Microbiological Safety of Rape (Brassica napus) Pollen (유채(Brassica napus)화분에 대한 감마선 조사가 미생물 제어 및 화분의 품질특성에 미치는 영향)

  • Kim, Kyoung-Hee;Kim, Kwang-Hun;Jeong, Su-Ji;Kim, Dam;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1843-1847
    • /
    • 2013
  • This study is carried out to sanitize rape (Brassica napus) pollen by gamma irradiation. Rape pollens were treated with 0, 5, 10 and 15 kGy gamma irradiations, and then analyzed for the following: general composition, microbial population, reducing sugar, Hunter color values, TBARS (2-thiobarbituric acid reactive substances) values, and VBN (volatile basic nitrogen). Mold and coliform bacteria were not detected in the samples irradiated at 5 kGy or more. Yeasts and total aerobic bacteria were not detected in the samples irradiated at 10 kGy or more (<$10^2$ CFU/g). Moisture, ash, crude protein, crude fat, carbohydrate, reducing sugar and the contents of volatile basic nitrogen in the irradiated pollen did not show any significant changes by irradiation. Hunter color values, $L^*$, $a^*$ and $b^*$ values were decreased with increment of irradiation dose. TBARS values were increased with an increment of irradiation dose. In conclusion, gamma irradiation at 5 kGy was considered to be an effective treatment to control for mycotoxin producing fungi in rape pollen to minimize changes of general composition and physicochemical properties. Further studies should be investigated to reduce the detrimental effects induced by irradiation.

Development and Validation of Urea- SCR Control-Oriented Model for NOX and NH3 Slip Reduction (NOX 및 NH3 Slip 저감을 위한 Urea-SCR 제어기반 모델 개발 및 검증)

  • Lee, Seung Geun;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • To satisfy stricter $NO_X$ emission regulations for light- and heavy-duty diesel vehicles, a control algorithm needs to be developed based on a selective catalytic reaction (SCR) dynamics model for chemical reactions. This paper presents the development and validation of a SCR dynamics model through test rig experiments and MATLAB simulations. A nonlinear state space model is proposed based on the mass conservation law of chemical reactions in the SCR dynamics model. Experiments were performed on a test rig to evaluate the effects of the $NO_X$ and $NH_3$ concentrations, gas temperature, and space velocity on the $NO_X$ conversion efficiency for the urea-SCR system. The parameter values of the proposed SCR model were identified using the experimental datasets. Finally, a control-oriented model for an SCR system was developed and validated from the experimental data in a MATLAB simulation. The results of this study should contribute toward developing a closed-loop control strategy for $NO_X$ and $NH_3$ slip reduction in the urea-SCR system for an actual engine test bench.

Analysis of Single Nucleotide Polymorphism of eNOS Genes in Korean Genome (한국인의 eNOS 유전자 SNP 분석)

  • Lee, Hyung-Ran;Kim, Su-Won;Yoo, Min
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.181-185
    • /
    • 2014
  • We identified SNPs (single nucleotide polymorphisms) for endothelial nitric oxide synthase (eNOS) genes in the Korean genome. eNOS is present in the vascular endothelium, platelets, and several other cell types that continuously produce modest amounts of NO. Endothelium-derived NO plays a key role in the regulation of vascular tone, and the impaired effects of NO on the cardiovascular system appear to be responsible for coronary atherosclerosis and thrombosis. In recent studies, a missense variant within exon 7 of the eNOS gene in patients with coronary spastic angina-GAG to GAT substitution, which results in the replacement of glutamic acid by aspartic acid (Glu298Asp [G894T])-has been identified and is known to be significantly associated with coronary spasm. We prepared PCR primers based on sequences in Genbank. Primers were prepared for normal and SNPs separately, as reported for other Asian countries, such as G894T. Their sequences were different only at the 3' ends so that primer extension could only by possible when base pairs between templates and primers matched. We also employed ARMS (Amplification Refractory Mutation System) technology to improve the specificity of the PCR reaction. In conclusion, we were able to demonstrate the eNOS G894A polymorphism in Korean gemone. This study should facilitate research on the cause of myocardial infarction and development on further therapy at the genetic level.

Effect of Inorganic Coagulants on the Performance of Electro-Chemical Treatment Process Treating Hospital Wastewater (병원폐수의 전기화학적 처리시 무기응집제 주입 효과에 관한 연구)

  • Jeong, Seung-Hyun;Jeong, Byung-Gon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.709-716
    • /
    • 2011
  • Effect of inorganic coagulants dosing on the performance of electro-chemical process was studied when treating hospital wastewater having low electrolyte concentration. It is thought that adding inorganic coagulants caused increase in concentration of electrolyte and this caused increase in free chloride concentration and consequently, caused increase in indirect oxidation effect. Thus, COD removal efficiencies more than doubled in percentage terms at the 2 hrs of reaction time and current density of $1.76A/dm^2$ compared with the results obtained from the parallel experiments without adding inorganic coagulants. T-N removal efficiencies approximately doubled in percentage terms at the 2 hrs of reaction time and 700 ppm of coagulants addition and applied current density of $1.76A/dm^2$ due to the increase of free residual chlorine such as HOCl caused by increase of electrolyte concentration through the addition of inorganic coagulants. Under the same experimental condition, more than 90% of T-P removal efficiencies was obtained. The reason can be explained that increase of chemical adsorption rate between phosphate and insoluble metal compounds caused by dissolved oxygen generated from anode by the increased electrolyte concentration through inorganic coagulants addition make a major role in improving T-P removal efficiencies. It can be concluded that inorganic coagulants addition as the supplemental agent of electrolyte is effective way in improving organic and nutrient salt removal efficiency when treating hospital wastewater having low electrolyte concentration.

Fungal laccases from basidiomycetes and their inducibility (담자균으로부터 생산되는 균체 Laccases 및 이 효소의 유도특성)

  • Leonowicz, Andrzej;Wilkolazka, A.;Rogalski, J.;Kim, Dong-Hoon;Cho, Nam-Seok
    • Journal of Mushroom
    • /
    • v.2 no.3
    • /
    • pp.127-139
    • /
    • 2004
  • Laccases are multicopper-containing enzymes which catalyze the oxidation of phenolic and nonphenolic compounds with the concomitant reduction of molecular oxygen. They often occur as isoenzymes, either constitutive or inducible, that oligomerize to multilateral complexes, what allow for penetration to the woody cell wall structure. White rot basidiomycete fungi may produce a number of laccase isoenzymes, some constitutively and others after induction. Fungal laccase is commonly induced by many ions, such as $Cu^{2+}$, $Cd^{2+}$ $Ca^{2+}$, $Li^+$, $Mn^{2+}$, $Ag^+$, $Hg^{2+}$, Mn and $Fe^{3+}$, phenolic compounds, some organic compounds, such as ethanol, isopropanol, cAMP, caffeine, p-anisidine, viscosinamide and paraquat, and nitrogens and even heat shock. A combination of Cu and pHB (p-hydroxybenzoic acid) made it possible to extend the inducible laccase activities over 30-fold. But the most effective inducer of laccase in the basidiomycete and other higher fungi is 2,5-xylidine, over 160-fold stimulation of laccase activity. The laccases are frequently encoded by gene families, as e.g. in Pycnoporus cinnabarinus, from which the lcc3-1 or the allelic form lac1 and lac3-2 have been cloned and sequenced. In the case of inducible forms the post-inductional laccase formation depends upon the synthesis of mRNA and the induction is due to the synthesis of a new protein.

  • PDF

Inhibitory Effect of Angelica gigas Nakai Extract on Nitric Oxide Production in RAW 264.7 Cells (대식세포에서 산화질소 생성에 대한 당귀(當歸) 에탄올 추출물의 억제효과)

  • Jeong, Mi-Young;Park, Hi-Joon;Jeong, Jee-Haeng;Kim, Jin-Young;Kang, Jun-Mo;Lee, Na-Kyeong;Lim, Sabina
    • The Journal of Korean Medicine
    • /
    • v.28 no.2 s.70
    • /
    • pp.155-165
    • /
    • 2007
  • Objective : The Angelica gigas Nakai ethanol extract (AGE) was investigated to compare nitric oxide (NO) production and $NF-{\kappa}B$ activity from RAW 264.7 cells, since NO and nuclear $factor-{\kappa}B$ $(NF-{\kappa}B)$ have been shown to be factors implicated in inflammatory disease. Method : AGE was prepared by extracting medicinal herb with 70% (v/v) ethanol solution. We investigated production of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) gene expression by ARE in LPS-stimulated RAW 264.7 macrophage cells. We also investigated inhibition of LPS-induced activation of $NF-{\kappa}B$ on western blot. Result : LPS-induced RAW 264.7 cells increased NO production and iNOS expression. Upon treatment with AGE, nitrite production was significantly inhibited in a concentration-dependent manner compared to the untreated control. AGE inhibited this LPS-induced iNOS mRNA and protein in a dose-dependent manner. AGE markedly inhibited the expression of iNOS mRNA and protein at a concentration of 100 ${\mu}g/ml$. LPS-induced RAW 264.7 cells with AGE blocked inhibitory $factor-{\kappa}B{\alpha}$ degradation. Conclusion :This study shows that AGE seems to attenuate inflammation through inhibition of NO production and iNOS expression by blockade of $NF-{\kappa}B$ activation in LPS-stimulated RAW 264.7 cells.

  • PDF

Antioxidative Activity and Produced Condition of Antioxidative Substance by Bacillus sp. FF-7 (Bacillus sp. FF-7에 의한 항산화물질 생산조건과 항산화 활성)

  • Cha, Jae-Young;Kim, Hyo-Jung;Jun, Bang-Sil;Park, Jin-Chul;Ok, Min;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.165-170
    • /
    • 2003
  • The antioxidative activity of antioxidative substances produced from several bacterial strains isolated from fermented foods were tested by $DPPH\;({\alpha},{\alpha}'-diphenyl-{\beta}-picrylhydrazyl)$ free radical scavenging activity. One of the strains showing the highest antioxidative activity was identified as Bacillus sp. based on the morphological, biochemical, physiological characteristics, and 16S rRNA sequence, and named FF-7. The most optimal medium condition for the production of antioxidative substance from Bacillus sp. FF-7 was 2% galactose as carbon source and l% tryptone as nitrogen source. The antioxidative substance produced from FF-7 in these cultural medium was also tested by in vitro experimental models, the peruxidation of linoleic acid and the peroxidation of rat tissues microsomes by using thiobarbituric acid (TBA) for assay of free malondialdehyde production. The antioxidative activity against lipid peroxidation of rat tissues microsomes was shown in the following order; brain 97.50% > heart 79.95% > kidney 77.84% > spleen 77.47% > testis 69.96% > liver 62.45%. The antioxidative substance produced from FF-7 on linoleic acid peroxidation by IBA method was effectively inhibited during four days, and 0.05% BHT (butylated hydroxytoluene) used comparative control was also effectively inhibited. Results showed that the highest antioxidative activity by DPPH method of antioxidative substance produced from Bacillus sp. FF-7 was obtained by supplementing 2% galactose as carton source and l% tryptone as nitrogen source in cultured medium, this substance effectively inhibited the formation of TBARS in brain microsome in vit개 system and in linoleic acid peroxidation.

Effect of Violae Herba Water Extract on the Proinflammatory Factors of LPS-Induced Macrophages (자화지정 추출물이 LPS로 유발된 대식세포의 염증인자에 미치는 영향)

  • Han, Hyo-Sang
    • Journal of Digital Convergence
    • /
    • v.16 no.7
    • /
    • pp.309-316
    • /
    • 2018
  • The purpose of this study was to investigate the effects of Violae Herba Water Extract (VH) on the proinflammatory factors of lipopolysaccharide (LPS)-induced on the production of inflammatory mediators in RAW 264.7 mouse macrophages cells. We examined effect of Violae Herba Water Extract on the cell viability of RAW 264.7 mouse macrophages cells. Futhermore, After 24 hours treatment we investigated anti-inflammatory effect of Violae Herba Water Extract by the production of Bio-Plex cytokine assay, concentrations of various cytokines such NO, $interleukin(IL)-1{\beta}$, tumor necrosis factor ${\alpha}(TNF-{\alpha})$ and IL-6. The water extract of Violae Herba significantly inhibited the production of NO, $IL-1{\beta}$, $TNF-{\alpha}$ and IL-6 at the concentration of 25, 50, 100 and $200{\mu}g/mL$ in the LPS-induced RAW 264.7 mouse macrophages cells with no changes in the cell viability of them. These results suggest that water extract of Violae Herba has anti-inflammatory effect related with its inhibition of proinflammatory cytokines such as $IL-1{\beta}$, $TNF-{\alpha}$ and IL-6 in the LPS-induced RAW 264.7 mouse macrophages cells. Further research is needed to develop therapeutic agents for inflammatory diseases using Violae Herba.

Bioconversion of nitrogen oxides and reduction of ferric ions by probiotic lactic acid bacteria (프로바이오틱스 유산균에 의한 질소 산화물 전환 및 철 이온 환원활성)

  • Kim, Selim;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.785-791
    • /
    • 2021
  • Many lactic acid bacteria (LAB) have probiotic properties that exert various health benefits. In this study, the reduction potential of nitrogen oxide compounds and ferric ions by six LAB, including Lactobacillus kimchicus, L. lactis, L. casei, L. plantarum, L. rhamnosus GG, and Leuconostoc mesenteroides were evaluated. The L. kimchicus strain produced a substantial amount of nitrite reduced from nitrate added to the media, whereas the other five LAB strains did not. L. kimchicus also showed the most potent reducing activity of ferric to ferrous ions. However, the reduction potential of the autoclaved L. kimchicus was little pronounced. The scavenging activities of viable LAB or their cell lysates against different radicals were not consistent with the potency of the LAB's reducing ability. The present results indicate that L. kimchicus has a strong reduction potential for nitrogen oxides in viable status, and that this ability can be used as a probiotic property for various health benefits.

Synthesis of Ethylamines for the Reductive Amination of Ethanol over Ni Catalysts: Effect of Supports (니켈 촉매상에서 에탄올의 환원성 아민화반응에 의한 에틸아민 제조 : 담체의 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.714-722
    • /
    • 2019
  • Catalysts were prepared by using incipient wetness impregnation method with 17 wt% Ni on a support ($SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, $SiO_2$, $TiO_2$, MgO) and the catalytic activity in the reductive amination of ethanol with ammonia in the presence of hydrogen was compared and evaluated. The catalysts used before and after the reaction were characterized using X-ray diffraction, nitrogen adsorption, ethanol-temperature programmed desorption (EtOH-TPD), isopropanol-temperature programmed desorption (IPA-TPD), and hydrogen chemisorption etc. In the case of preparing $ZrO_2$ and $Y_2O_3$ supports, the small amount of Si dissolution from the Pyrex reactor surface provoked the formation of mixed oxides $SiO_2-ZrO_2$ and $SiO_2-Y_2O_3$. Among the catalysts used, $Ni/SiO_2-Y_2O_3$ catalyst showed the best activity, and this good activity was closely related to the highest nickel dispersion, and low desorption temperature in EtOH-TPD and IPA-TPD. The low catalytic activity on Ni/MgO catalysts showed low activity due to the formation of NiO-MgO solid-solutions. In the case of $Ni/TiO_2$, the reactivity was low due to the low nickel metal phase due to strong metal-support interaction. In the case of using a support as $SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, and $SiO_2$, the selectivities of ethylamines and acetonitrile were not significantly different at similar ethanol conversion.