• Title/Summary/Keyword: 산화전극

Search Result 1,054, Processing Time 0.021 seconds

Properties of Indium Tin Oxide Thin Films According to Oxygen Flow Rates by γ-FIB System (γ-FIB 시스템을 이용한 산소 유량 변화에 따른 산화인듐주석 박막의 특성 연구)

  • Kim, D.H.;Son, C.H.;Yun, M.S.;Lee, K.A.;Jo, T.H.;Seo, I.W.;Uhm, H.S.;Kim, I.T.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.333-341
    • /
    • 2012
  • Indium Tin Oxide (ITO) thin films were prepared by RF magnetron sputtering with different flow rates of $O_2$ gas from 0 to 12 sccm. Electrical and optical properties of these films were characterized and analyzed. ITO deposited on soda lime glass and RF power was 2 kW, frequency was 13.56 MHz, and working pressure was $1.0{\times}10^{-3}$ Torr, Ar gas was fixed at 1,000 sccm. The transmittance was measured at 300~1,100 nm ranges by using Photovoltaic analysis system. Electrical properties were measured by Hall measurement system. ITO thin films surface were measured by Scanning electron microscope. Atomic force microscope surface roughness scan for ITO thin films. ITO thin films secondary electron emission coefficient(${\gamma}$) was measured by ${\gamma}$-Focused ion beam. The resistivity is about $2.4{\times}10^{-4}{\Omega}{\cdot}cm$ and the weighted average transmittance is about 84.93% at 3 sccm oxygen flow rate. Also, we investigated Work-function of ITO thin films by using Auger neutralization mechanism according to secondary electron emission coefficient(${\gamma}$) values. We confirmed secondary electron emission peak at 3 sccm oxygen flow rate.

A Synthesis of LiCoO2 using the CoSO4 Recovered from Cathode Material Scrap and its Electrochemical Properties (폐 리튬 이차전지로부터 회수된 황산코발트 제조 및 이를 이용해 합성된 산화리튬코발트 양극활물질의 전기화학적 특성)

  • Kim, Mi-So;Ha, Jong-Keun;Park, Se-Bin;Ahn, Jou-Hyeon;Choi, Im-Sic;Cho, Kwon-Koo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.111-118
    • /
    • 2014
  • The electrochemical properties using the cells assembled with the synthesized $LiCoO_2$(LCO) were evaluated in this study. The LCO was synthesized from high-purity cobalt sulfate($CoSO_4$) which is recovered from the cathode scrap in the wastes lithium ion secondary battery(LIB). The leaching process for dissolving the metallic elements from the LCO scrap was controlled by the quantities of the sulfuric acid and hydrogen peroxide. The metal precipitation to remove the impurities was controlled by the pH value using the caustic soda. And also, D2EHPA and $CYANEX^{(R)}272$ were used in the solvent extraction process in order to remove the impurities again. The high-purity $CoSO_4$ solution was recovered by the processes mentioned above. We made the 6 wt.% $CoSO_4$ solution mixed with distilled water. And the 6 wt.% $CoSO_4$ solution was mixed with oxalic acid by the stirring method and dried in oven. $LiCoO_2$ as a cathode material for LIB was formed by the calcination after the drying and synthesis with the $Li_2CO_3$ powder. We assembled the cells using the $LiCoO_2$ powders and evaluated the electrochemical properties. And then, we confirmed possibility of the recyclability about the cathode materials for LIBs.

Melting Characteristics for Radioactive Aluminum Wastes in Electric Arc Furnace (아크 용융로에서 방사성 알루미늄 폐기물의 용융특성)

  • Min, Byung-Youn;Song, Pyung-Seob;Ahn, Jun-Hyung;Choi, Wang-Kyu;Jung, Chong-Hun;Oh, Won-Zin;Kang, Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • The characteristics of the aluminum waste melting and the distribution of the radioactive nuclides have been investigated for the estimation on the volume reduction and the decontamination of the aluminum wastes from the decommissioning of the TRIGA MARK it and III research reactors at the Korea Atomic Energy Research Institute(KAERI). The aluminum wastes were melted with the use of the fluxes such as flux $A:NaCl-KCl-Na_3AlF_6$, flux B:NaCl-NaF-KF, flux $C:CaF_2$, and flux $D:LiF-KCl-BaCl_2$ in the DC graphite arc furnace. For the assessment of the distribution of the radioactive nuclides during the melting of the aluminum, the aluminum materials were contaminated by the surrogate nuclides such as cobalt(Co), cesium(Cs) and strontium(Sr). The fluidity of aluminum melt was increased with the addition of the fluxes, which has slight difference according to the type of fluxes. The formation of the slag during the aluminum melting added the flux type C and D was larger than that with the flux A and B. The rate of the slag formation linearly increased with increasing the flux concentration. The results of the XRD analysis showed that the surrogate nuclide was transferred to the slag, which can be easily separated from the melt and then they combined with aluminum oxide to form a more stable compound. The distribution ratio of cobalt in ingot to that in slag was more than 40% at all types of fluxes. Since vapor pressures of cesium and strontium were higher than those that of the host metals at the melting temperature, their removal efficiency from the ingot phase to the slag and the dust phase was by up to 98%.

  • PDF

Synthesis and Electrochemical Properties of Carbon Coated Li4Ti5O12 using PVC (PVC를 원료로 탄소코팅한 Li4Ti5O12의 합성 및 전기화학적 특성)

  • Hyun, Si-Cheol;Na, Byung-Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • In this study, $Li_4Ti_5O_{12}$ anode materials for lithium ion battery were synthesized by dry ball-mill method. Polyvinyl chloride (PVC) as a carbon source was added to improve electrochemical properties. When the PVC was added after $Li_4Ti_5O_{12}$ formation, the spinel structure was well synthesized and it was confirmed by X-ray diffraction (XRD) experiments. When the carbon material was added before the synthesis and the heat treatment was performed, it was confirmed that a material having a different crystal structure was synthesized even when a small amount of carbon material was added. In the case of $Li_4Ti_5O_{12}$ without the carbon material, the electrical conductivity value was about $10{\mu}S\;m^{-1}$, which was very small and similar to that of the nonconductor. As the carbon was added, the electrical conductivity was greatly improved and increased up to 10,000 times. Electrochemical impedance spectroscopy (EIS) analysis showed that the size of semicircle corresponding to the resistance decreased with the carbon addition. This indicates that the resistance inside the electrode is reduced. According to the Cyclic voltammetry (CV) analysis, the potential difference between the oxidation peak and the reduction peak was reduced with carbon addition. This means that the rate of lithium ion insertion and deinsertion was increased. $Li_4Ti_5O_{12}$ with 9.5 wt% PVC added sample showed the best properties in rate capabilities of $180mA\;h\;g^{-1}$ at 0.2 C-rate, $165mA\;h\;g^{-1}$ at 0.5 C-rate, and $95.8mA\;h\;g^{-1}$ at 5 C-rate.