• Title/Summary/Keyword: 산화적 스트레스

Search Result 806, Processing Time 0.039 seconds

Micro Raman Spectroscopic Analysis of Local Stress on Silicon Surface in Semiconductor Fabrication Process (반도체 제조 공정에서 실리콘 표면에 유입된 Stress의 마이크로 Raman 분광분석)

  • Son, Min Young;Jung, Jae Kyung;Park, Jin Seong;Kang, Sung Chul
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.359-366
    • /
    • 1992
  • Using micro-Raman spectrometer, we investigated the evaluation of microstress on silicon surface after the local thermal oxidation. The induced stress of silicon surface after local thermal oxidation shows maximum value at the interface of silicon oxide and active area. The smaller the size of active area, the larger stress. From the evaluation of three other device isolation processes, A, B and moB, whose active size has $0.45{\mu}m$ in length, moB process is turned out to have the lowest stress value and the smallest bird's beak effect.

  • PDF

Increased Antioxidative Activities against Oxidative Stress in Saccharomyces cerevisiae KNU5377 (산화 스트레스 대한 Saccharomyces cerevisiae KNU5377의 항산화 활성의 증가)

  • Kim, Il-Sup;Yun, Hae-Sun;Yang, Ji-Young;Lee, Oh-Seok;Park, Heui-Dong;Jin, Ing-Nyol;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • Oxidative stress is a consequence of an imbalance of the defense system against cellular damage generated by reactive oxygen species (ROSs) such as superoxide anions (menadione; MD). Most organisms have evolved a variety of defense systems to protect cells from adverse conditions. In order to evaluate stress tolerance against oxidative stress generating MD, comparative analyses of antioxidant capacity, or free radical scavenger ability, were performed between S. cerevisiae KNU5377 (KNU5377) and three wild-type S. cerevisiae strains. In a medium containing 0.4 mM MD, the KNU5377 strain showed higher cell viability and antioxidant ability, and contained higher levels of trehalose, superoxide dismutase, thioredoxin system, glucose-6-phosphate dehydrogenase, and some heat shock proteins. The KNU5377 strain also produced a lower level of oxidative stress biomarker than the other three yeast strains. These results indicate that S. cerevisiae KNU5377 has a higher level of tolerance to oxidative stress due to the increased expression of cell rescue proteins and molecules, thus alleviating cellular damage more efficiently than other S. cerevisiae strains.

Protective effects of Seoritae Chungkukjang added with green tea powder against 3-morpholinosydnonimine-induced oxidative stress (녹차 첨가 서리태 청국장의 3-morpholinosydnonimine에 의한 산화적 스트레스 개선 효과)

  • Cho, Eun-Ju;Park, Hyun-Young;Lee, Sang-Hyun;Kim, Hyun-Young
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.407-414
    • /
    • 2015
  • To increase antioxidative activity of Chungkukjang, the protective effect of Seoritae Chungkukjang (SC) added with green tea powder against oxidative stress was evaluated under the cellular system using LLC-$PK_1$ cells. The treatment of 3-morpholinosydnonimine showed increase in lipid peroxidation, and decrease in endogenous anti-oxidant enzymes activity and cell viability. The methanol extract of SC inhibited lipid peroxidation by 70.9%, and significantly increased cell viability up to more than 33.2%. In addition, it enhanced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. Particularly, the addition of green tea in SC exerted protective effect against oxidative stress by ONOO- through elevation in activities of SOD and GSH-Px, and inhibition of lipid peroxidation. More addition of green tea showed stronger protective activity. These results suggest that the addition of green tea to SC leads to the increase in the antioxidative effect of Chungkukjang through elevation in antioxidative enzyme activities and protection from lipid peroxidation.

Antioxidative Activiry and Anticlastogeniciry of Cassia tora L. seeds Extract and its Major Component, $Nor-rubrofusarin-6-{\beta}-D-glucoside$ (결명자 추출물과 노르-루브로푸사린의 산화적 스트레스억제효과 및 항염색체손상과 효과)

  • 김수희;최재수;허문영
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.4
    • /
    • pp.394-399
    • /
    • 1998
  • 결명자의 주용성분인 노르-루브로푸사린의 함량이 높은 추출물을 얻기 위하여 결명자분말을 0~100%의 에탄올수용액으로 추출하여 고농도의 노르-루브로푸사린을 함유하는 결명자 추출물을 제조하였다. 결명자추출물과 주요 함유성분인 노르-루브로푸사린은 항산화활성과 프리라디칼소거 작용을 나타내었으며, H2O2 유도 세포독성에 대해서도 억제적으로 작용하여 cyto-protective effect를 나타내었다. 또한 DNA crosslinking agent 인 mitomycin C 유도 소핵생성에도 결명자 70% 에탄올추출물과 노르-루브로파사린이 매우 높은 억제활성을 나타내었다. 따라서 결명자 추출물과 노르-루브로푸사린은 산소라디칼들에 의한 산화적 손상 및 DNA 손상 등에 억제적으로 작용하는 기전을 활용하여 항산화성 스트레스를 통한 항노화 , 암예방제로서의 응용가능성이 높은 물질로 판단되었다.

  • PDF

Evaluation of Toxic Effects Caused by Pesticides in Escherichia coli Using Recombinant Bioluminescent Bacteria (유전자 재조합 발광박테리아를 이용한 농약 독성평가)

  • Kim Jiwon;Gu Man Bock
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.295-305
    • /
    • 2004
  • 본 연구에서는 유전자 재조합 발광 박테리아를 이용하여 농약에 대한 박테리아의 스트레스 반응과 세포 독성을 분석하였다. 15종류의 농약에 대하여 유전자 손상, 생물막 손상, 산화적 손상 및 단백질 손상을 측정할 수 있는 발광 박테리아와 독성 유무로 인한 세포 독성을 측정할 수 있는 발광 박테리아, 5종을 이용하여 스트레스 반응을 분류하고 세포 독성 정토를 분석하였다. 그 결과, 농약의 화학적 구조가 박테리아의 스트레스 반응에 영향을 미치며, 산화과정이 진행 됨에 따라 독성의 작용 기작이 변하는 것을 확인 할 수 있었다. 이와 같은, 유전자 재조합 발광 박테리아를 이용한 생물체내의 독성 메커니즘에 대한 분석은 생태계 유해물질들에 의한 독성을 분석하고 예상하기 위해 적용될 수 있을 것이다.

Effect of Fermented Herbal Mixture against Oxidative Stress in HepG2 and PC12 Cells (HepG2 및 PC12 세포에서 혼합 한약재 발효물의 산화적 스트레스 억제 활성 평가)

  • Lee, Yunjeong;Kim, Nan-Seul;Shon, Myung-Soo;Kim, Gyo-Nam;Hwang, Yong-Il;Park, Eunju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.1057-1064
    • /
    • 2016
  • This study was carried out to investigate the effect of fermented herbal mixtures (FHMs) in HepG2 and PC12 cells. Two different types of fermented herbal mixtures consisted of Chrysanthemum morifolium, Ganoderma lucidum, Acanthopanax senticosus, Schisandra chinensis, Hovenia dulcis thumb, and Lycii fructus. FHM-A and FHM-B were separately fermented with Prunellae Spica, Portulaca oleracea (FHM-A) and Acorus gramineus, Pycnostelma paniculatum (FHM-B). Total phenolic content of FHM-B was higher than that of FHM-A. ORAC values in both FHM-A and FHM-B increased in a dose-dependent manner, and antioxidant activities against peroxyl radicals were higher in FHM-A than FHM-B. Both FHM-A and FHM-B effectively ameliorated AAPH- and ethanol-induced oxidative stress in HepG2 cells. They also suppressed lipid formation induced by ethanol treatment. In addition, FHM-A and FHM-B prevented $H_2O_2$-induced PC12 cell death. FHM-B showed a relatively stronger protective effect than that of FMB-A. Taken together, these findings show that a fermented herbal mixture could be used in healthy and functional food design for oxidative stress-related diseases.

Effects of Pine Needle Ethyl Acetate Fraction on Membrane Fluidity and Oxidative Stress in Liver Membranes of Rats (간장 세포막의 유동성과 산화적 스트레스에 미치는 솔잎(Pine Needle) 에틸아세테이트획분의 영향)

  • 최진호;김대익;백승진;박시향;김남주;최민경;조원기;김창목
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.684-691
    • /
    • 2003
  • This study was designed to investigate the effects of ethyl acetate (EtOAc) fraction of pine (Pinus densiflora Sieb et Zucc) needle extract on membrane fluidity (MF), basal and induced oxygen radical (BOR and IOR), lipid peroxide(LPO) and oxidized protein (OP) as an oxidative stress, and lipofuscin(LF) in liver membranes of male Sprague-Dawley rats. Rats were fed basic diets (control) and experimental diets (EtOAc-25, EtOAc-50 and EtOAc-100) for 45days. MFs were significantly increased (about 10%) in mitochondria of EtOAc-100 group compared with control group. BOR and IOR formations in mitochondria were significantly inhibited (about 12∼18% and 9 ∼l2%, respectively) in EtOAc-50 and EtOAc-100 groups, while BOR and IOR formations in microsomes were significantly inhibited (about 9∼l3% and 18∼19%, respectively) compared with control group. LPO levels were significantly inhibited (about 10% and 12∼13%, respectively) in mitochondria of EtOAc-100 and microsomes of EtOAc-50 and EtOAc-100 groups, whereas OP levels were significantly inhibited (about 13∼14%) in mitochondria of EtOAc-50 and EtOAc.-100 groups compared with control group. LF formations were significantly inhibited (about 10∼14%) in these three EtOAc groups. These results suggest that ethyl acetate fraction of pine needle may play an effective role in attenuating an oxidative stress and increasing a membrane fluidity.

Neuroprotective Effects of Cirsium setidens, Pleurospermum kamtschaticumin, and Allium victorials Based on Antioxidant and p38 Phosphorylation Inhibitory Activities in SK-N-SH Neuronal Cells (SK-N-SH 신경세포내 항산화 효과와 p38 인산화 억제에 의한 곤드레, 누룩치 그리고 산마늘의 신경 보호 효과)

  • Chung, Mi Ja;Park, Yong Il;Kwon, Ki Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.347-355
    • /
    • 2015
  • Oxidative stress is one of the key mechanisms involved in neuronal damage. Neuroprotective effects and underlying mechanisms of action of several wild vegetables, Cirsium setidens (CS), Pleurospermum kamtschaticumin (PK), and Allium victorials (AV), against oxidative stress induced by hydrogen peroxide in SK-N-SH cells were investigated. CS and AV up to $400{\mu}g/mL$ showed no detectable effects on cell viability of human SK-N-SH neuro-blastoma cells compared with control. Incubation of SK-N-SH cells with hydrogen peroxide resulted in significant induction of cell death and reaction oxygen species (ROS) production, whereas treatment of cells with CS and AV significantly reduced cell death and ROS production, respectively. Among the wild vegetables tested, CS and PK showed more effective DPPH radical scavenging activity than AV, whereas PK showed strong cytotoxicity in SK-N-SH cells compared with the control. CS showed much higher inhibitory effects on cell death and ROS generation against oxidative stress than AV. Thus, CS was selected for subsequent experiments. Ethyl acetate (EA), hexane, butanol, aqueous, and chloroform extracts from CS significantly inhibited cell death and ROS generation in SK-N-SH cells induced by oxidative stress. EA extract from CS (CS-EA) showed the highest DPPH radical-scavenging activity, intra-cellular ROS-scavenging activity, and neuroprotective effects. CS-EA attenuated apoptosis signal-regulating p38 activation by inhibiting phosphorylation. The findings suggest that CS-EA protects neuronal cells through antioxidant activity and inhibition of phosphorylation of p38 in brain neural cells.