• Title/Summary/Keyword: 산화저항성

Search Result 505, Processing Time 0.031 seconds

Gas-sensing Characteristics of $WO_3$-$SnO_2$Thin-film Sensors ($WO_3$-$SnO_2$박막 센서의 가스감지특성)

  • 유광수;김태송
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1180-1186
    • /
    • 2001
  • W $O_3$-Sn $O_2$thin film sensors with approximately 1${\mu}{\textrm}{m}$ in thickness were fabricated by using a high-vacuum resistance-heating evaporator, were annealed at 50$0^{\circ}C$ for 4 hours in air, and then their crystallinities and surface microstructures were analyzed. As results of gas-sensing characteristics to oxidizing gas, N $O_2$, and reducing gas, CO, of 100 ppm, the highest gas sensitivities (S= $R_{gas}$/ $R_{air}$) were the W $O_3$thin-film sensor measured at 25$0^{\circ}C$ for N $O_2$(S≒1000) and the Sn $O_2$thin-film sensor measured at 15$0^{\circ}C$ to 25$0^{\circ}C$ range for CO (S≒0.25), respectively.ely.

  • PDF

Fabrication and Characteristics of CFRC(Carbon Firber Reinforced Carbon Composites) Fabricated with Carbon Fiber and Coal Tar Pitch Matrix (석탄계 핏치를 결합재로한 탄소/탄소 복합재의 제조 및 특징)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.194-205
    • /
    • 1994
  • In this research, we attempt to fabricate an excellent CFRC(Carbon Fiber Reinforced Carbon), which has good thermal and mechanical properties, with 8H/satin woven fabric prepreg, high modulus and high strength type continuous carbon fiber and raw coal tar pitch(RCTP) matrix or THF soluble fraction(THFSP) matrix which has good graphitizability. Green bodies were fabricated with hot press molding technique and CFRC samples were made after carbonization, impregnation, recarbonization and graphitization steps. For the purpose of characterization of the physical properties, SEM, polarized light microscope, TGA were observed, and tested flexural strength, modulus and ILSS. After heat treating the THFSP matrix up to $2300^{\circ}C$, the value of $C_0$/2 was 3.380$\AA$, which is analogous to the structure of natural graphite and the value of 2$\theta$ is $26.276^{\circ}$ approached to the Bragg's angle of natural graphite. As a result of TGA to test the high temperature air oxidation, the THFSP matrix, graphitized up to $2300^{\circ}C$, exhibited the best air oxidation resistance. And mechanical properties were increased up to 65~70% as fiber volume fraction increased. Because of the good orientation graphitizability, the fracture surface of THFSP matrix CFRC is very good.

  • PDF

Characteristics of Sintered Composites for $ZnO-{B_2}{O_3}-{SiO_2}-PbO$ Glass and $ZrB_2$Powders ($ZnO-{B_2}{O_3}-{SiO_2}-PbO$계 유리와 $ZrB_2$분말의 소결체의 특성)

  • Song, Hyun-Jin;Lee, Byung-Chul;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.562-568
    • /
    • 2001
  • Devitrifiable solder glass/$ZrB_2$ sintered composites were prepared by using glass with the composition of $60ZnO-20B_2O_3-10SiO_2-10PbO$(in wt%) and $ZrB_2$, powder as starting materials under the $N_2$atmosphere. $ZrB_2$which the good conduction materials showed sensitive oxidation characteristics, because some parts of the $ZrB_2$in specimens changed into the insulated phase of $ZrO_2$. These Phenomena would be estimated that it caused a few amount of residual oxygen in the furnace and/or specimens and the coordination number change of $B_2O_3$ in the glass. The sintering temperature and the mixed ratios of each phase were control of large ranged the resistivity ranged from 10 to 10$^{3}{\Omega}/cm^2$ orders, and to make a conductible microstructure. From these results, it would be explained that the conduction path of $ZrB_2$particles built up within sintered glass matrix.

  • PDF

The Effect of Ag thickness on Optical and Electrical Properties of V2O5/Ag/ITO Multilayer (Ag의 두께에 따른 V2O5/Ag/ITO 구조의 다층 박막의 광학적, 전기적 특성)

  • Ko, Younghee;Park, Gwanghoon;Ko, Hang-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.7-11
    • /
    • 2014
  • Recently, the buffer layers consisting of poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT-PSS) are extensively used to improve power conversion efficiency (PCE) of organic solar cells. However, PEDOT-PSS is not suitable for mass production of organic solar cells due to its intrinsic acid and hygroscopic properties. Moreover, because of chemical reactions between indium tin oxide (ITO) layer and PEDOT-PSS layer, the interface is not stable. For these reasons, alternative materials such as $V_2O_5$ have been developed to be an effective buffer layer. In this work, we used $V_2O_5$/Ag/ITO multilayer structure for the anode buffer layer. With variation of thickness of Ag layer, we investigated the optical and electrical properties of $V_2O_5$/Ag/ITO multi-layer films. As a result, we found that the electrical properties were improved with increasing Ag thickness while optical transmittance decreases in visible wavelength region. From the calculation of figure of merit (FOM) which is used to evaluate proper structure for transparent of optoelectronic, $V_2O_5$/Ag/ITO multilayer electrode was optimized with 4 nm thick Ag layer in optical (88% in transmittance) and electrical ($4{\times}10^{-4}{\Omega}cm$) properties. This indicates that $V_2O_5$/Ag/ITO multilayer electrode could be a candidate for the anode of optoelectronic devices.

SF6/O2 가스를 이용한 다결정 실리콘 웨이퍼 RIE Texturing이 제작된 태양전지 동작특성에 미치는 영향

  • Park, Gwang-Muk;Lee, Myeong-Bok;Jeong, Ji-Hui;Bae, So-Ik;Choe, Si-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.395-396
    • /
    • 2011
  • 본 논문에서는 30% 내외의 평균반사율을 가지는 다결정 실리콘 태양전지의 입사광 손실을 최소화하여 광전변환효율 극대화를 구현하기 위해서 SF6/O2 혼합가스를 이용한 RIE 표면 texturing 공정을 수행하였다. 현재 다결정 실리콘 태양전지는 다양한 방향의 grain을 가지기 때문에 단결정 실리콘에 적용되는 습식 식각 방식이 다결정 실리콘 표면 texturing에 적절하지 않은 것으로 알려져 있다. 이를 개선하기 위해서 이방성 식각 특성을 가지는 다양한 texturing 방법이 시도되고 있다. 대표적으로 기계적인 방식의 V-grooving, 레이저 grooving, 플라즈마 건식식각을 이용한 texturing 및 산 용액을 이용한 texturing 등의 연구가 보고되고 있다. 그 중에서 플라즈마 건식식각 방식의 하나인 RIE를 이용한 표면 texturing 공정이 간단한 공정과 산업계 응용의 용이성 때문에 활발히 연구되어 왔다. 특히 Sandia group과 일본 Kyocera사의 연구 결과에서는 그 가능성을 입증하고 있다. 본 연구에서는 공정의 단순화와 안전한 공정을 위해서 SF6/O2 혼합 가스를 이용하여 마스크 패턴 공정없이 RIE texturing 공정을 수행하였으며, RIE-textured 다결정 실리콘에 대해서 태양전지를 제작하여 표면 texturing이 광전변환효율에 미치는 영향에 대해서 분석하였다. 그 결과 SF6/O2 혼합 가스를 이용한 RIE texturing은 다결정 실리콘 표면에 주로 needle 구조를 형성하는 것을 확인하였다. 각 texturing 조건별 반사율의 차이는 needle 구조의 조밀도와 관련되는 것을 알 수 있었으며, 동일 공정 parameter 상에서 식각 시간 1, 2, 3, 4, 5분 기준 시간에 따른 표면 구조 분석 결과 seed 가 형성되고 그에 따라서 needle 형태로 식각되는 과정을 관찰하였다. 반사율은 분당 약 4%씩 낮아져 5분 식각 후 14.45% 까지 낮아졌으며, 표면 구조에서 폭은 약 30 nm로 모두 일정하며, 길이가 약 20, 30, 50, 80, 100 nm으로 증가되었다. 이 결과로 보아 seed로부터 needle 구조가 심화되어가는 것을 알 수 있었다. 시간에 따른 RIE texturing 후 제작된 태양전지는 효율이 1분 식각 기준 15.92%에서 약 0.35% 씩 낮아져 5분 식각 후 14.4%로 낮아졌다. Voc 는 texturing 시간에 관계없이 일정하며 Isc가 점점 감소되는 것으로 확인되었다. EQE 결과도 이와 동일하게 RIE texturing 시간이 길어질수록 전체 파장 범위에서 일정하게 낮아지는 것이 관찰되었다. Electroluminescence(EL) 이미지 결과 texturing 시간이 길어진 태양전지일수록 점점 어두운 이미지가 나타나 5분 식각의 경우 가장 어두운 결과를 나타내었다. 이런 결과는 한 가지 이유보다는 복합적인 문제로 예상되는데 궁극적으로는 RIE 공정 후 표면에 쌓인 charged particle들이 trap 준위를 형성하여 효율 및 공정상에 영향을 미친 것으로 보이며, 특히 잔류 O기가 불균일한 산화막을 형성하는 것으로 예상된다. 또한 EL 분석 결과를 볼 때 RIE texturing 공정이 길어질수록 불안정한 pn-junction을 형성하는 것을 확인하였으며, emitter 층 형성 후 PSG (phosphorous silica glass) 공정에서 needle의 상부 구조가 무너지면서 면저항이 증가된 결과로 분석된다. PSG 제거 후 측정된 면저항의 경우 3분 texturing 샘플부터 면저항이 약 4${\Omega}/sq$ 정도 증가됨을 확인하였다.

  • PDF

Mixed Carbon/Polypyrrole Electrodes Doped with 2-Naphthalenesulfonic Acid for Supercapacitor (2-Naphthalenesulfonic Acid로 도핑된 혼합카본/폴리피롤을 이용한 Supercapacitor용 전극)

  • Jang, In-Young;Kang, An-Soo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.425-431
    • /
    • 2005
  • New type of supercapacitor using high surface area activated carbons mixed with high conductivity polypyrrole (Ppy) has been prepared in order to achieve low impedance and high energy density. Mixed carbons of BP-20 and MSP-20 were used as the active electrode material, and polypyrrole doped with 2-naphthalenesulfonic acid (2-NSA) and carbon black (Super P) as conducting agents were added to activated carbons in order to enhance good electric conductivity. Electrodes prepared with the activated electrode materials and the conducting agents were added to a solution of organic binder [P(VdF-co-HFP) / NMP]. The ratio of optimum electrode composition was 78 : 17 : 5 wt.% of (MSP20 : BP-20=1 : 1), (Super P : Ppy=10 : 7) and P(VdF-co-HFP) respectively. The performance of unit cell with addition of 7 wt% Ppy have shown specific capacitance of 28.02 F/g, DC-ESR of $1.34{\Omega}$, AC-ESR of $0.36{\Omega}$, specific energy of 19.87 Wh/kg and specific power of 9.77 kW/kg. With addition of Ppy, quick charge-discharge of unit cell was possible because of low ESR, low charge transfer resistance and quick reaction rate. And good stability up to 500 chargedischarge cycles were retained about 80% of their original capacity. It was concluded that the specific capacitance originated highly from compound phenomena of the pseudocapacitance by oxidation-reduction of polypyrrole and the nonfaradaic capacitance by adsorption-desorption of activated carbons.

Crystallization and Magnetic Properties of Iron Doped La-Ba-Mn-O (Fe이 치환된 LaBaMnO계 산화물의 중성자 회절 및 Messbauer분광학연구)

  • Choi, Kang-Ryong;Kim, Sam-Jin;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • The iron doped colossal magnetoresistance materials with La-Ba-Mn-O perovskites structure have been synthesized by chemical reaction of sol-gel methods. Their crystallographic and magnetic properties have been studied with x-ray diffraction, VSM, RBS, Mossbauer spectroscopy, and magnetoresistance measurements. The crystal structure of the La$\_$0.67/Ba$\_$0.33/Mn$\_$0.99/Fe$\_$0.01/ $O_3$ at room temperature was determined to be orthorhombic of Pnma. The lattice parameters a$\_$0/ and c$\_$0/ increased gradually, but b$\_$0/ deceased with increase of iron substitution. The magnetization and coercivity deceased, also the Curie temperature decreased from 360 K as x increased from 0.00 to 0.05. Magnetoresistence measurements were carried out, and the maximum MR ($\Delta$$\rho$/$\rho$(0)) was observed at 281 K, about 9.5 % in 10 kOe. The temperature of maximum resistance (R$\_$MAX/) decreased with increasing substitution of Fe ions and a semiconductor-metal transition temperature (T$\_$SC-M/) decreased too. This phenomena show that ferromagnetic transition temperature decreased by substituting Fe for Mn ions, it decreases double exchange interaction. This result accords with magnetic structure of neutron diffraction. Mossbauer spectra of La$\_$0.67/Ba$\_$0.33/Mn$\_$0.99/Fe$\_$0.01/ $O_3$were taken at various temperatures ranging from 15 to 350 K. With lowering temperature of the sample, two magnetic phases were increased and finally it showed the two sharp sextets of spectra at 15 K. The isomer shift at all temperature range is about 0.3 mm/s relative to Fe metal, which means that both Fe ions are Fe$\^$3+/ states.Fe$\^$3+/ states.

Properties of Indium Tin Oxide Thin Films According to Oxygen Flow Rates by γ-FIB System (γ-FIB 시스템을 이용한 산소 유량 변화에 따른 산화인듐주석 박막의 특성 연구)

  • Kim, D.H.;Son, C.H.;Yun, M.S.;Lee, K.A.;Jo, T.H.;Seo, I.W.;Uhm, H.S.;Kim, I.T.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.333-341
    • /
    • 2012
  • Indium Tin Oxide (ITO) thin films were prepared by RF magnetron sputtering with different flow rates of $O_2$ gas from 0 to 12 sccm. Electrical and optical properties of these films were characterized and analyzed. ITO deposited on soda lime glass and RF power was 2 kW, frequency was 13.56 MHz, and working pressure was $1.0{\times}10^{-3}$ Torr, Ar gas was fixed at 1,000 sccm. The transmittance was measured at 300~1,100 nm ranges by using Photovoltaic analysis system. Electrical properties were measured by Hall measurement system. ITO thin films surface were measured by Scanning electron microscope. Atomic force microscope surface roughness scan for ITO thin films. ITO thin films secondary electron emission coefficient(${\gamma}$) was measured by ${\gamma}$-Focused ion beam. The resistivity is about $2.4{\times}10^{-4}{\Omega}{\cdot}cm$ and the weighted average transmittance is about 84.93% at 3 sccm oxygen flow rate. Also, we investigated Work-function of ITO thin films by using Auger neutralization mechanism according to secondary electron emission coefficient(${\gamma}$) values. We confirmed secondary electron emission peak at 3 sccm oxygen flow rate.

Study on High Sensitivity Metal Oxide Nanoparticle Sensors for HNS Monitoring of Emissions from Marine Industrial Facilities (해양산업시설 배출 HNS 모니터링을 위한 고감도 금속산화물 나노입자 센서에 대한 연구)

  • Changhan Lee;Sangsu An;Yuna Heo;Youngji Cho;Jiho Chang;Sangtae Lee;Sangwoo Oh;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.30-36
    • /
    • 2022
  • A sensor is needed to continuously and automatically measure the change in HNS concentration in industrial facilities that directly discharge to the sea after water treatment. The basic function of the sensor is to be able to detect ppb levels even at room temperature. Therefore, a method for increasing the sensitivity of the existing sensor is proposed. First, a method for increasing the conductivity of a film using a conductive carbon-based additive in a nanoparticle thin film and a method for increasing ion adsorption on the surface using a catalyst metal were studied.. To improve conductivity, carbon black was selected as an additive in the film using ITO nanoparticles, and the performance change of the sensor according to the content of the additive was observed. As a result, the change in resistance and response time due to the increase in conductivity at a CB content of 5 wt% could be observed, and notably, the lower limit of detection was lowered to about 250 ppb in an experiment with organic solvents. In addition, to increase the degree of ion adsorption in the liquid, an experiment was conducted using a sample in which a surface catalyst layer was formed by sputtering Au. Notably, the response of the sensor increased by more than 20% and the average lower limit of detection was lowered to 61 ppm. This result confirmed that the chemical resistance sensor using metal oxide nanoparticles could detect HNS of several tens of ppb even at room temperature.

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.