DOI QR코드

DOI QR Code

Study on High Sensitivity Metal Oxide Nanoparticle Sensors for HNS Monitoring of Emissions from Marine Industrial Facilities

해양산업시설 배출 HNS 모니터링을 위한 고감도 금속산화물 나노입자 센서에 대한 연구

  • Changhan Lee (Major of Nano-semiconductor Engineering, Korea Maritime & Ocean University) ;
  • Sangsu An (Major of Nano-semiconductor Engineering, Korea Maritime & Ocean University) ;
  • Yuna Heo (Major of Nano-semiconductor Engineering, Korea Maritime & Ocean University) ;
  • Youngji Cho (Major of Nano-semiconductor Engineering, Korea Maritime & Ocean University) ;
  • Jiho Chang (Major of Nano-semiconductor Engineering, Korea Maritime & Ocean University) ;
  • Sangtae Lee (Division of Maritime AI & Cyber Security, Korea Maritime & Ocean University) ;
  • Sangwoo Oh (Maritime Safety and Environmental Research Division) ;
  • Moonjin Lee (Maritime Safety and Environmental Research Division)
  • 이창한 (한국해양대학교 나노반도체공학과 ) ;
  • 안상수 (한국해양대학교 나노반도체공학과 ) ;
  • 허유나 (한국해양대학교 나노반도체공학과) ;
  • 조영지 (한국해양대학교 나노반도체공학과) ;
  • 장지호 (한국해양대학교 나노반도체공학과 ) ;
  • 이상태 (한국해양대학교 해사인공지능.보안학부) ;
  • 오상우 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 이문진 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • Received : 2022.11.10
  • Accepted : 2022.12.28
  • Published : 2022.12.31

Abstract

A sensor is needed to continuously and automatically measure the change in HNS concentration in industrial facilities that directly discharge to the sea after water treatment. The basic function of the sensor is to be able to detect ppb levels even at room temperature. Therefore, a method for increasing the sensitivity of the existing sensor is proposed. First, a method for increasing the conductivity of a film using a conductive carbon-based additive in a nanoparticle thin film and a method for increasing ion adsorption on the surface using a catalyst metal were studied.. To improve conductivity, carbon black was selected as an additive in the film using ITO nanoparticles, and the performance change of the sensor according to the content of the additive was observed. As a result, the change in resistance and response time due to the increase in conductivity at a CB content of 5 wt% could be observed, and notably, the lower limit of detection was lowered to about 250 ppb in an experiment with organic solvents. In addition, to increase the degree of ion adsorption in the liquid, an experiment was conducted using a sample in which a surface catalyst layer was formed by sputtering Au. Notably, the response of the sensor increased by more than 20% and the average lower limit of detection was lowered to 61 ppm. This result confirmed that the chemical resistance sensor using metal oxide nanoparticles could detect HNS of several tens of ppb even at room temperature.

수처리 후 직접 해양으로 배출하는 산업시설 등에서 Hazardous and Noxious Substance (HNS) 농도 변화를 연속 자동 측정하기 위한 센서의 기본적 성능으로 상온에서도 ppb 수준의 검출이 가능한 센서가 필요하다고 판단하여 기존의 센서의 감도를 높이기 위한 방법을 제안하였다. 우선 나노입자 박막에 전도성 탄소계 첨가물을 이용하여 필름의 전도도를 높이는 방법과 촉매 금속을 이용하여 표면에서의 이온 흡착도를 높이는 방법에 대해서 각각 연구하였다. 전도성 개선을 위해서 ITO 나노입자를 활용한 필름에 carbon black을 첨가물로 선택하여, 첨가물 함유량에 따른 센서의 성능변화를 관찰하였다. 그 결과 CB 함량 5 wt% 정도에서 전도성 증가에 의한 저항과 응답시간의 변화를 관찰할 수 있었고, 유기용제를 대상으로 한 실험에서 검출하한은 250 ppb 정도까지 낮아지는 것을 확인하였다. 또한 액체 중 이온 흡착도를 높이기 위하여 센서 표면에 촉매로 Au를 스퍼터로 제작한 표면 촉매층을 형성한 시료를 이용한 실험에서 센서의 응답은 20% 이상 증가하고 평균 검출하한은 61 ppm까지 낮아지는 것을 확인하였다. 이 결과로부터 금속산화물 나노입자를 활용한 화학저항형 센서가 상온에서도 수십 ppb 정도의 HNS를 검출할 수 있다는 것을 확인하였다.

Keywords

Acknowledgement

이 논문은 2022년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20210660, 해양산업 시설 배출 위험유해물질 영향평가 및 관리기술 개발).

References

  1. Bianchi, S., E. Comini, M. Ferroni, G. Faglia, A. Vomiero, and G. Sberveglieri(2006), Indium oxide quasi-monodimensional low temperature gas sensor, Sensors and Actuators B:Chemical, B118, pp. 204-207. 
  2. Choudhury, S., C. A. Betty, K. G. Girija, and S. K. Kulshreshtha(2006), Room temperature gas sensitivity of ultrathin SnO2 films prepared form Langmuir-Blodgett film precursors, Applied Physics Letters, 89, 071914. 
  3. Fields, L. L., J. P. Zheng, Y. Cheng, and P. Xion(2006), Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt, Applied Physics Letters, 88, 263102. 
  4. Helwig, A., G. Muller, M. Eickhoff, and G. Sberveglieri(2007), Dissociative gas sensing at metal oxide surfaces, IEEE Sensors Journal, 7, pp. 1675-1679, and the references therein.  https://doi.org/10.1109/JSEN.2007.909428
  5. Hoel, A., L. F. Reyes, P. Heszler, V. Lantto, and C. G. Granqvist(2004), Nanomaterials for environmental applications: Novel WO3-based gas sensors made by advanced gas deposition, Current Applied Physics, 4, pp. 547-553.  https://doi.org/10.1016/j.cap.2004.01.016
  6. Hoel, A., L. F. Reyes, S. Saukko, P. Heszler, V. Lantto, and C. G. Granqvist(2005), Gas sensing with films of nanocrystalline WO3 and Pd made by advanced reactive gas deposition, Sensors and Actuators B:Chemical, B105, pp. 283-289. 
  7. Khotko, V., E. Llobet, X. Vilanova, J. Brezmes, J. Hubalek, K. Malysz, and X. Correig(2005), Gas sensing properties of nanoparticle indium-doped WO3 thick films, Sensors and Actuators B:Chemical, B111-B112, pp. 45-51. 
  8. Kong, X and Y. Li(2005), High sensitivity of CuO Modified SnO2 nanoribbons to H2S at room temperature, Sensors and Actuators B:Chemical, B105, pp. 449-453.  https://doi.org/10.1016/j.snb.2004.07.001
  9. Korotcenkov, G., V. Brinzari, J. Schwank, and A. Cerneavschi (2002), Possibilities of aerosol technology for deposition of SnO2-based films with improved gas sensing characteristics, Materials Science and Engineering. C19, pp. 73-77. 
  10. Lee, C. H., J. H. Noh, S. S. An, S. T. Lee, D. M. Seo, M. J. Lee, and J. H. Chang(2022), pH Sensor Application of Printed Indium-Tin-Oxide Nanoparticle Films, Journal of Sensor Science and Technology, 31(2), pp. 85-89.  https://doi.org/10.46670/JSST.2022.31.2.85
  11. Lee, S. H., J. Y. Jung, M. J. Lee, and J. H. Chang(2017), An Aqueous Ammonia Sensor Based on Printed Indium Tin Oxide Layer, Sensors and Materials, 29(1), pp. 57-63. 
  12. National Law Information Center(국가법령정보센터), Enforcement Decree of the Water Environment Conservation Act(물환경보전법시행령), https://www.law.go.kr/법령/물환경보전법시행령, 2022a, (accessed 2022.07.01). 
  13. National Law Information Center(국가법령정보센터), Water Environment Conservation Act(물환경보전법), https://www.law.go.kr/법령/물환경보전법, 2022b, (accessed 2022.03.25). 
  14. National Law Information Center(국가법령정보센터), Water Pollution Process Test Standards(수질오염공정시험기준), https://www.law.go.kr/행정규칙/수질오염공정시험기준, 2022c, (accessed 2022.02.21). 
  15. Pandis, C., N. Brilis, E. Bourithis, D. Tsamakis, H. Ali, S. Krishnamoorthy, A. A. Iliadis, and M. Kompitsas(2007), Low-temperature hydrogen sensors based on Au nanoclusters and Schottky contacts on ZnO films deposited by pulsed laser deposition on Si and SiO2 substrates, IEEE Sensors Journal, 7, pp. 448-454. 
  16. Partridge, J. G., M. R. Field, A. Z. Sadek, K. Kalantar-zadeh, J. D. Plessis, M. B. Taylor, A. Atanaciio, K. E. Prince, and D. G. McCulloch(2009), Fabrication, structural Characterization and testing of a nanostructured tin oxide gas sensor, IEEE Sensors Journal, 9, pp. 563-568.  https://doi.org/10.1109/JSEN.2009.2016613
  17. Riu, J., A. Maroto, and F. X. Rius(2006), Nanosensors in environmental analysis, Talanta, 69, pp. 288-301, and the references therein.  https://doi.org/10.1016/j.talanta.2005.09.045
  18. Rothschild, A. and Y. Komem(2004), The effect of grain size on the sensitivity of nanocraystalline metal-oxide gas sensors, Journal of Applied Physics, 95, pp. 6374-6380.  https://doi.org/10.1063/1.1728314
  19. Tan, M. X., P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E. Stanton, and N. S. Lewis(1994), Principles and applications of semiconductor photoelectrochemistry, Progress in inorganic chemistry, 41, pp. 21-144. 
  20. Wang, C., X. Chu, and M. Wu(2006), Detection of H2S down to ppb levels at roomtemperature using sensors based on ZnO nanorods, Sensors and Actuators B:Chemical, B113, pp. 320-323.  https://doi.org/10.1016/j.snb.2005.03.011
  21. Wang, C. Y., V. Cimalla, T. Kups, C. -C. Rohlig, T. Stauden, O. Ambacher, M. Kunzer, T. Passow, W. Schirmacher, W. Pletschen, K. Kohler, and J. Wagner(2007), Intergration of In2O3 nanoparticle based ozone sensors with GaInN/GaN ligth emitting diodes, Applied Physics Letters, 91, 103509.