• Title/Summary/Keyword: 산촉매

Search Result 555, Processing Time 0.025 seconds

Supercritical Water Hydrolysis of Waste Logs after Oak Mushroom Production (초임계수를 이용한 표고버섯 골목의 가수분해)

  • Koo, Bon-Wook;Lee, Jae-Won;Choi, Joon-Weon;Choi, Don-Ha;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.81-95
    • /
    • 2006
  • In order to investigate the possibility of waste logs after oak mushroom production as a source of an alternative energy and to obtain the fundamental data of supercritical water hydrolysis that has been paid attention as a new saccharification method of lignocellulosics, supercritical water hydrolysis of normal log woods (Quercus acutissima Carruth) and waste logs was carried out. With the increase of reaction time and temperature, the color of the degradation products has been dark and the degradation rate and the crystalline index increased. However the increase of reaction pressure affected the color of the degradation products and the degradation rate at only low reaction temperature. In the early stage of the reaction, the degradation of hemicellulose was progressed, while in the late stage, the cellulose was degraded. The increase of reaction time and reaction temperature (less than $415^{\circ}C$) improved the sugar yield, while at high temperature(more than $415^{\circ}C$), the sugar yield was decreased. Based on the result of the sugar yield, the optimal hydrolysis condition of Q. acutissima Carruth by supercritical water was determined to be $415^{\circ}C$, 60 seconds and 230 pressure bar with the sugar yield of 2.68% (w/w). At the optimal condition, the supercritical water hydrolysis of waste logs after the mushroom production was carried out and the sugar yield was increased to 358% (w/w). The major degradation products of waste logs by supercritical water hydrolysis were 1,1'-oxybis-benzene and 1,2-benzendicarboxylic acid by the GC-MS analysis. At the reaction condition with low degradation rate, the fatty acids such as pentadecanoic acid, 14-methyl-heptadecanoic acid were identified. With the increase of the reaction temperature and time, the amounts of phenol and benzene were increased, but the reaction pressure did not affect the kinds of degradation products. Holocellulose content was 60.6~79.2% in the water insoluble residue and the monosaccharide yield of the water insoluble residue was 49.2~675% by the acid hydrolysis. The monosaccharide yield of water-soluble portion was increased largely by the second hydrolysis using dilute acid.

Comparative Study on Mechanical Properties and Dimensional Stability of Staypak and Wood-Polymer Composites from Populus alba × P. Glandulosa wood (현사시나무로 제조(製造)된 열압축목재(熱壓縮木材)와 목재(木材)-고분자(高分子) 복합체(複合體) 재질(材質)의 비교연구(比較硏究))

  • Pak, Sang-Bum;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.14-34
    • /
    • 1985
  • One of the techniques for altering the properties of wood that has received considerable attention in the last twenty years is the formation of a wood-polymer composite (WPC) by irradiation and heat-catalyst polymerization of a monomer incorporated into the wood matrix. Wood-polymer composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC and Staypak. The species examined was Hyunsasi-Namoo (Populus alba ${\times}$ P. glandulosa) which had not been utilized yet. Methylmethacrylate (MMA) as monomer, benzoyl peroxide (BPO) as initiator and methyl alcohol as bulking agent were used. The monomer containing BPO was impregnated into wood pieces by the dipping and the vacuum process for 2 hours. After impregnation, the treated samples were polymerized on the hot press with pressure and heat-catalyst methods. The results obtained were summarized as follows 1. The monomer loading into wood by the dipping process was 12.13 percent and 29.99 percent by the vacuum. The polymer loading into wood by the dipping process was 6.79 percent and 15.44 percent by the vacuum. 2. Comparing with Staypak, antishrink efficiency (ASE) of WPC was 12.5 to 13.6 percent on the radial direction and 14.70 to 18.63 percent on the tangential. Antiswelling efficiency (AE) was 14.40 to 17.22 percent on the radial direction and 17.18 to 42.1 8 to 42.14 percent on the tangential. Reduction in water absorptivity (RWA) was 8.19 to 15.5 percent. As a whole, the vacuum process was better than the dipping. 3. The specific gravity of control, Staypak and WPC were 0.44, 0.66 and 0.61 to 0.62, respectively. 4. In the bending strength test, the strength in case that the load direction is on the radial surface was greater than that which the load direction is on the tangential. 5. Increasing rate of stress at proportional limit in compression perpendicular to grain was 72.26 percent in case of WPC by the dipping process, 78.93 percent by the vacuum and 99.09 percent in case of Staypak.

  • PDF

On the manufacturing of WPC (Wood Plastic Composites) with Heat-Catalyst Polymerization (I) - On the characteristics of composites made from monomer Methyl MethacryIate and several commercial woods in Korea (가열(加熱)·촉매중합법(觸媒重合法)에 의한 목재(木材)·고분자복합체(高分子複合體) 제조(製造)(I) - MMA에 의한 한국산(韓國産) 주요목재(主要木材)의 복합체특성(複合體特性))

  • Cho, Nam-Seok;Jo, Jae-Myeong;Ahn, Won-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.3-16
    • /
    • 1974
  • One of the disadvantages of. wood and wood products is their hydroscopicity or dimensional instability. This is responsible for the loss of green volume of lumber as seasoning degrade. Dimensional stabilization is needed to substantially reduce seasoning defects and degrades and for increasing the serviceability of wood products. Recently, considerable world-wide attention has been drawn to the so-called Wood-Plastic Composites by irradiation-and heat-catalyst-polymerization methods and many research and developmental works have been reported. Wood-Plastic Composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC. The species examined were Mulpurae-Namoo (Fraxinus, rhynchophylla), Sea-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acermono), Karae-Namoo(Juglans mandshurica) and Sanbud-Namoo (Prunus sargentii), used as blocks of type A ($3{\times}3{\times}40cm$) and type B ($5{\times}5{\times}60cm$), and were conditioned to about 10~11% moisture content before impregnation in materials humidity control room. Methyl methacrylate (MMA) as monomer and benzoyl peroxide (BPO) as initiator are used. The monomer containing BPO was impregnated into wood pieces in the vacuum system. After impregnation, the treated samples were polymerized with heat-catalyst methods. The immersed weights of monomer in woods are directly proportionated to the impregnation times. Monomer impregnation properties of Cheungcheung-Namoo, Mulpurae-Namoo and Seo-Namoo are relatively good, but in Karae-Namoo, it is very difficult to impregnate the monomer MMA. Fig. 3 shows the linear relation between polymer retentions in wood and polymerization times; that is, the polymer loadings are increasing with polymerization times. Furthermore species, moisture content, specific gravity and anatomical or conductible structure of wood, bulking solvents and monomers etc have effects on both of impregnation of monomer and polymer retention. Physical properties of treated materials are shown in table 3. Increasing rates of specific gravity are ranged 3 to 24% and volume swelling 3 to 10%. ASE is 20 to 46%, AE 14 to 50% and RWA 18 to 40%. Especially, the ASE in relation to absorption of liquid water increases approximately with increase of polymer content, although the bulking effect of the polymerization of monomer may also be influential. WPCs from Mulpurae-Namoo and Cheungcheung-Namoo have high dimensional stability, while its of Karae-Namoo and Seo-Namoo are-very low. Table 4 shows the mechanical properties of WPCs from 6 species. With its specific gravity and polymer loading increase, all mechanical properties are on the increase. Increasing rate of bending strength is 10 to 40%, compression strength 25 to 70%, ;impact bending absorbed energy 4 to 74% and tensile strength 18 to 56%. Mulpurae-Namoo and Cheungcheung-Namoo with high polymer content have considerable high increasing rate of strengths. But incase of Karae-Namoo with inferior monomer impregnation it is very low. Polymer retention in cell wall is 0.32 to 0.70%. Most of the polymer is accumulated in cell lumen. Effective. of polymer retention is 58.59% for Mulpurae-Namoo, 26.27% for Seo-Namoo, 47.98% for Cheungcheung-Namoo, 25.64% for Korosae-Namoo, 9.96% for Karae-Namoo and 25.84% for Sanbud-Namoo.

  • PDF

Anti-oxidative and Cytoprotective Effect of Ursodeoxycholic Acid, an Active Compound from the Bear's Gall, in Mouse Microglia (생쥐 뇌소교세포주에서 웅담추출활성성분(우르소데옥시콜린산)의 항산화 및 세포보호효과)

  • Joo, Seong-Soo;Kim, Seong-Kun;Yoo, Yeong-Min;Ryu, In-Wang;Kim, Kyung-Hoon;Lee, Do-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.452-455
    • /
    • 2006
  • The in vitro cytoprotective and anti-oxidative effects of ursodeoxycholic acid, a major active compound from bear's gall were investigated in mouse brain microglia. In the present study, we wished to scrutinize the potential role of UDCA as an anti-neurodegenerative agent in neurodegenerative disease such as Alzheimer's disease. This concept was supported by the multiple preliminary studies in which UDCA has an anti-inflammatory effect in microglial cells. In the study, we found that $7.5\;{\mu}g/mL$ UDCA was effective in the protection of cells from $H_2O_2$ damage, a reactive oxygen, and the resuIt was coincided with the anti-apoptotic effect in DAPI staining. Moreover, the metal-catalyzed oxidation study showed that UDCA has antioxidant effect as much as ascorbic acid at $50{\sim}100\;{\mu}g/mL$. In conclusion, these study results suggested that neuro-degenerative diseases such as Alzheimer's disease probably caused by over-expressed beta amyloid peptide in elderly people can be controled by UDCA through an anti-inflammatory, anti-oxidative and anti-apoptotic effect. The evidences showed in the study may be references for more in-depth in vivo and clinical studies for a candidate of anti-neurodegenerative therapy in the near future.

Optimization of Medium Components using Response Surface Methodology for Cost-effective Mannitol Production by Leuconostoc mesenteroides SRCM201425 (반응표면분석법을 이용한 Leuconostoc mesenteroides SRCM201425의 만니톨 생산배지 최적화)

  • Ha, Gwangsu;Shin, Su-Jin;Jeong, Seong-Yeop;Yang, HoYeon;Im, Sua;Heo, JuHee;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.861-870
    • /
    • 2019
  • This study was undertaken to establish optimum medium compositions for cost-effective mannitol production by Leuconostoc mesenteroides SRCM201425 isolated from kimchi. L. mesenteroides SRCM21425 from kimchi was selected for efficient mannitol production based on fructose analysis and identified by its 16S rRNA gene sequence, as well as by carbohydrate fermentation pattern analysis. To enhance mannitol production by L. mesenteroides SRCM201425, the effects of carbon, nitrogen, and mineral sources on mannitol production were first determined using Plackett-Burman design (PBD). The effects of 11 variables on mannitol production were investigated of which three variables, fructose, sucrose, and peptone, were selected. In the second step, each concentration of fructose, sucrose, and peptone was optimized using a central composite design (CCD) and response surface analysis. The predicted concentrations of fructose, sucrose, and peptone were 38.68 g/l, 30 g/l, and 39.67 g/l, respectively. The mathematical response model was reliable, with a coefficient of determination of $R^2=0.9185$. Mannitol production increased 20-fold as compared with the MRS medium, corresponding to a mannitol yield 97.46% when compared to MRS supplemented with 100 g/l of fructose in flask system. Furthermore, the production in the optimized medium was cost-effective. The findings of this study can be expected to be useful in biological production for catalytic hydrogenation causing byproduct and additional production costs.