• Title/Summary/Keyword: 산악지형

Search Result 349, Processing Time 0.021 seconds

A Study on the Selection of Optimum Location Using GIS Technique: The Case of Optimum Defense Area between Seoul and Dongducheon (GIS 기법을 이용한 최적입지 선정 연구 - 서울-동두천간의 최적방어지역 선정 -)

  • Kim, Doo-Il;Lee, Hyung-Ho;Han, Uk
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.137-147
    • /
    • 1993
  • Terrain is on of the most important factors in the selection of defense areas. The objective of the study is selection optimum defense area between Seoul and Dongducheon using GIS technique. The contents of the study are: (1) to select the defense area by pure terrain factors, (2) to select the defense area with focusing on the avenues of approach, and (3) to compare the above two kinds of area. The study area is located in the northeastern part of Seoul metropolitan area. It is part of Choogaryung Rift Valley which is running from Seoul to Wonsan. Six factors are considered for the selection: tactical distance, direction, elevation, slope, aspect and the distance from main roads. The defense score of each area is calculated by the multiplication of scores of each factors. The optimum defense area I consists of high-mountain areas such as Mt. Dobong, Mt. Wan-gbang, etc. The optimum defense area II consists of high-mountain areas along the three main roads selected. An east-west line of optimum defense area from Kuksabong in the east to Mt. Bulkuk in the west through Chookseok pass is identified from the spatial pattern of the area II. The line is also a dividing line between the northern and the southern watersheds.

  • PDF

Study on Variation of Local Atmospheric Circulation Due to Road Development in Mountain Area (산악지역 도로건설에 따른 국지 대기순환의 변화에 관한 연구)

  • Hwang, Soo-Jin;Seo, Kwang-Soo;Lee, Soon-Hwan
    • Journal of the Korean earth science society
    • /
    • v.25 no.2
    • /
    • pp.94-108
    • /
    • 2004
  • In order to clarify the efficiency of ground level change in Ice-valley on atmospheric circulation, numerical experiment was carried out. The circulations over the slope in North and South are different due to the topography and short wave radiation in Ice-valley. Therefore the circulations in both side are asymmetric and the asymmetric circulations are kept on at 1800 LST. A small difference of the atmospheric circulations formation is made due to the road construction at night. The reason may be the weakness of sensible heat flux from the road and other factors except that the sensible heat is not a principal factor in road construction. The construction of road is associated with growing of sensible heat from the road surface. For this reason, in case of daytime, ascending wind in north slope is more stronger with the road than that without road. The maximum wind speed becomes 4.67 m/s after road construction. And the position of the road is also an important factor in estimation of mesoscale circulation in mountainous area.

Model for Simulating SAR Images of Earth Surfaces (지표면의 SAR 영상 시뮬레이션 모델)

  • Jung Goo-Jun;Lee Sung-Hwa;Kim In-Seob;Oh Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.615-621
    • /
    • 2005
  • In this paper, a model for simulating synthetic aperture radar(SAR) images of earth surfaces. The earth surfaces include forest area, rice crop field, other agricultural fields, grass field, road, and water surface. At first, the backscattering models are developed for bare soil surfaces, water surfaces, short vegetation fields such as rice fields and grass field, other agriculture areas, and forest areas. Then, the SAR images are generated from the digital elevation model(DEM) and digital terrain map. The DTM includes ten parameters, such as soil moisture, surface roughness, canopy height, leaf width, leaf length, leaf density, branch length, branch density, trunk length, and trunk density, if applicable. The scattering models are verified with measurements, and applied to generate an SAR image for an area.

Estimation for application of the Runoff Analysis using TOPMODEL at an ungaged watershed (미계측유역에 대한 TOPMODEL의 적용성 평가)

  • Kang, Sung-Jun;Park, Young-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1458-1464
    • /
    • 2011
  • This study is on the application of TOPMODEL-topographic based hydrologic model-to the runoff analysis, The test area was the ssang-chi watershed which is mountainous catchment located in the upstream of the sumjin-gang basin and the watershed area is $126.7km^2$. The six's hourly runoff and precipitation data was selected in the 2006 ~ 2009 year. And the model parameters are calibrated using observed runoff data by Pattern Search method. The topographic index of the ssang-chi catchment was produced by digital elevation model(DEM) of 100m grid. As a results of the analysis, the parameters of model, a decay facter(m), transmissivity(T0), and the unsaturated zone delay(TD) are sensible to hydrologic response, and the simulated runoff data are in good agreement with observed runoff data.

A Sensor Node Deployment Method Based on Environmental Factors Influencing Sensor Capabilities (센서의 성능에 영향을 미치는 환경 요소들에 기반한 센서 노드 배치 방법)

  • Kim, Dae-Young;Choi, Hyuck-Jae;Lee, Jong-Eon;Cha, Si-Ho;Kang, Seok-Joong;Cho, Kuk-Hyun;Jo, Min-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10B
    • /
    • pp.894-903
    • /
    • 2008
  • The position of sensors generally affects coverage, communication costs, and resource management of surveillance sensor networks. Thus we are required to place a sensor in the best location. However, it is difficult to consider that terrain and climate factors influencing sensors when sensor nodes are deployed in the real world, such as a mountain area or a downtown area. We therefore require a sensor deployment method for detecting effectively targets of interest in terms of surveillance area coverage in such environment. Thus in this paper, we analyze various environmental factors related to sensor deployment, and quantify these factors to use when we deploy sensors. By considering these quantified factors, we propose a practical and effective method for deploying sensors in terms of sensing coverage. We also demonstrate the propriety of the proposed method through implementing a sensor deployment management system according to the method.

Study on Wave Propagation Characteristics Modeling in Tunnel (터널 환경에서의 전파전파 특성 모델링 연구)

  • Jeong, Won-Jeong;Kim, Tae-Hong;Han, Il-Tak;Choi, Moon-Young;Ryu, Joon-Gyu;Lee, Ho-Jin;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.1003-1013
    • /
    • 2009
  • In the domestic environments, there are many tunnels since most of terrains have mountains. To ensure the quality of wireless network service in NLOS environment like tunnels which differ from indoor or outdoor wireless channels, researches on wave-propagation characteristics. through such channel are necessary. Especially, in such environment the ground repeater called Gap-Fillers are usually used for satellite mobile services. To make sure that mobile service using satellites in tunnels is available, the research about Gap Filling method is essential. This research is focus on the characterising the wave-propagation through tunnels, to find the appropriate frequency, HPBW of the Gap-Filler antennas, the number of Gap-Fillers, etc. In this paper, we present the effective Gap Filling method in tunnels for ISM band, based on analysis of ray tracing and measurement results.

Safe tunneling method using numerical modeling of rock blocks in long tunnels (장대터널에서의 암반 블록의 수치 모델링을 이용한 터널 안전 시공법)

  • Hwang, Jae-Yun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • Since about 70 percent of the territory is mountainous, more tunnels are constructed in Korea for maximizing the development efficiency. With the increasing number of tunnel construction, safe construction in tunnels has been emerged as the utmost important subject. Recently, the number of long tunnel construction is steeply increased because of the request for high speed and straight road. In this study, a safe tunneling method using numerical modeling of rock blocks in long tunnels is proposed, and then applied to the long tunnel based on real discontinuity information observed in situ. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed for the safe tunneling method using numerical modeling of rock blocks. This computer simulation method with user-friendly interfaces can calculate not only the stability of rock blocks but also the design of supplementary supports.

Theoretical Review of Highway Grades Considering Vehicle Performances (차량성능을 고려한 최대종단경사 합리화 연구)

  • Kim, Sang-Yeop;Lee, Seung-Yong;Han, Hyeong-Gwan;Choe, Jae-Seong
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.79-90
    • /
    • 2007
  • In determining vertical grades in highway alignment design, engineers usually consider heavy vehicle performances on the upgrade. Heavy vehicles usually experience speed reduction on the upgrade and with recent years weight/horsepower improvements for heavy vehicles the speed reduction shows some change. However, in spite of the weight to horsepower improvements for the design vehicles from 300lb/HP to 200lb/HP in the AASHTO, there was no change in the maximum vertical grades. Therefore, a review of the maximum vertical grade reflecting existing heavy vehicle performances is required. In particular, in South Korea where highways pass through lots of mountaineous terrain, the maximum vertical grades must be reviewed throughly. In this study the amount of heavy vehicle performances during past decades were investigated and their expected impacts on highway vertical alignment designs were subsequently analyzed. A worldwide terrain analysis and international design standards were compared to set South Korean vertical grade standards. Traffic flow simulation Vissim was utilized to simulate vehicular flows on the upgrade and new truck performance curves on the grades were developed. Based on the new curve, it was decided that $1{\sim}2%$ increase of the maximum vertical grades could be allowed.

Design of a Robust Precision Aerial Delivery System Soft Landing Algorithm (외란에 강인한 정밀공중물자수송시스템 연착륙 알고리즘 설계)

  • Kim, Taewook
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.77-87
    • /
    • 2022
  • The Precision Aerial Delivery System is an instrument designed to improve the poor landing accuracy of aerial delivery system with conventional circular parachutes, and is equipped with an Airborne Guidance Unit to safely transport supplies to the desired destination. Currently, the landing accuracy of the PADS product is reported as CEP50 100m and also differs significantly, depending on the actual topography and weather environment. In this study, HILS was constructed based on the 6DOF nonlinear modeling of PADS to analyze the maneuver characteristics of Ram Air Parachute under wind environments. By using the new algorithm a precision soft landing algorithm including Energy Management and Final Approach is designed. HILS results show that it is possible to achieve a precise soft landing within CEP50 40m, and it can be exploited to develop an actual PADS drop test.

Stereo Matching For Satellite Images using The Classified Terrain Information (지형식별정보를 이용한 입체위성영상매칭)

  • Bang, Soo-Nam;Cho, Bong-Whan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.1 s.6
    • /
    • pp.93-102
    • /
    • 1996
  • For an atomatic generation of DEM(Digital Elevation Model) by computer, it is a time-consumed work to determine adquate matches from stereo images. Correlation and evenly distributed area-based method is generally used for matching operation. In this paper, we propose a new approach that computes matches efficiantly by changing the size of mask window and search area according to the given terrain information. For image segmentation, at first edge-preserving smoothing filter is used for preprocessing, and then region growing algorithm is applied for the filterd images. The segmented regions are classifed into mountain, plain and water area by using MRF(Markov Random Filed) model. Maching is composed of predicting parallex and fine matching. Predicted parallex determines the location of search area in fine matching stage. The size of search area and mask window is determined by terrain information for each pixel. The execution time of matching is reduced by lessening the size of search area in the case of plain and water. For the experiments, four images which are covered $10km{\times}10km(1024{\times}1024\;pixel)$ of Taejeon-Kumsan in each are studied. The result of this study shows that the computing time of the proposed method using terrain information for matching operation can be reduced from 25% to 35%.

  • PDF