• Title/Summary/Keyword: 산소 전달

Search Result 324, Processing Time 0.03 seconds

A Study on Oxygen Dissolution by Air Lift Pump (기포 펌프에 의한 산소 용해에 관한 연구)

  • Oh, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.45-50
    • /
    • 1999
  • 기포 펌프는 물과 공기 사이의 접촉 면적을 증가시켜 공기로부터 물로의 산소 용해를 높이는 기능을 가지고 있다. 이 연구에서는 기포 펌프에서 여러 가지 흐름 패턴을 설정하고, 이것을 근거로 하여 슬립모델을 확립하여, 기포 펌프의 산소 용해 특성을 조사하였다. 이 연구에서 수행한 실험 결과로부터, 산소 전달 계수는 흐름 패턴(기포 흐름, 기포-슬러그 흐름, 슬러그 흐름)에는 상당한 영향을 받았으나, 시료수의 오염 정도에 따른 영향은 그다지 크지 않음을 확인하였다. 그리고, 산소 전달양은 레이놀즈 수에 비례하여 증가하며, 산소 전달면을 증가시키기 위해서는 에어 스톤이나 디퓨저의 이용이 매우 효과적임을 확인하였다. 또한, 표면 활성 물질은 물의 오염 정도나 흐름 패턴에 관계없이 산소 전달에 큰 영향을 미침을 알 수 있었다.

  • PDF

Mass Transfer Characteristics of Vertical Two-Phase Flows with Orifice Nozzle (오리피스 노즐 수직 2 상 유동의 물질전달 특성)

  • Kim, Dong Jun;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.817-824
    • /
    • 2015
  • Experiments were carried out to investigate the flow and mass transfer characteristics of an orifice nozzle. Measurements of primary and suction flow rates, dissolved oxygen concentration, and electric power were obtained. Vertically injected mixed-jet images were captured by a direct visualization technique with a high speed camera unit. The mass ratio, volumetric mass transfer coefficient, and mass transfer performance were calculated using the measured data. As the primary flow pressure increases, the mass ratio decreases slightly, while the volumetric mass transfer coefficient and electric power increase. As the primary flow pressure increases and the mass ratio decreases, the mass transfer rate increases because of the fine bubbles and wider distribution of the bubbles.

Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector (수직 오리피스 이젝터의 혼합유동 및 산소전달 특성)

  • Kim, Dong Jun;Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

Mass Transfer Effects in Xanthan Gum Fermentation (Xanthan Gum 발효에 있어서 물질전달의 영향)

  • 임병연;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.277-282
    • /
    • 1989
  • Xanthan gum is a biopolymer produced by Xanthomonas campestris. In xanthan gum fermentation, the fermentation broth changes to highly viscous non-Newtonian fluid as xanthan gum concentration increases. Maximum xanthan gum concentration is limited by high viscosity of the broth since mass transfers of nutrient and oxygen are inhibited. Int this study the mass transfer effects were investigated in batch and fed-batch fermentations at various agitation speeds and by separate oxygen transfer experiments. Xanthan gum production rate was observed to be largely dependent on oxygen transfer coefficient; while cell growth rate was not affected highly by this factor.

  • PDF

Effect of Salinity on Dissolved Oxygen Characteristics in an Ejector-Aerator (이젝터-폭기 시스템의 용존산소특성에 미치는 염도의 영향)

  • Yang, Hei-Cheon;Park, Sang-Kyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.640-646
    • /
    • 2011
  • Dissolved oxygen (DO) refers to the volume of oxygen that is contained in water, and is a major indicator of water quality. The objective of this paper was to investigate the effect of salinity on the dissolved oxygen characteristics in an ejector-aerator. An experimental aeration system composed of a motor-pump, an ejector, a motor-blower, a set of aeration and recirculation tank and a control panel. The dissolved oxygen concentrations decreased with the water salinity. The volumetric mass transfer coefficient increased with increasing the water salinity.

Selection of the Best Oxygen Carrier for Chemical Looping Combustion in a Bubbling Fluidized Bed Reactor (기포유동층에서 케미컬루핑 연소시스템을 위한 최적 산소전달입자 선정)

  • Kim, Hana;Kim, Jung-Hwan;Yoon, Joo-Young;Lee, Doyeon;Baek, Jeom-In;Ryu, Ho-Jung
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 2018
  • The reduction reaction characteristics and physicochemical properties were studied for the selection of oxygen carrier, which is the core of the chemical looping combustion (CLC) technology. Fuel conversion and $CO_2$ selectivity of oxygen carrier according to the concentration of reducing gas and the reduction temperature using three kinds of oxygen carrier (SDN70, N018-R2, N016-R4) were measured and compared. In addition, Attrition Index (AI) and BET surface area were measured to analyze the attrition resistance and the surface characteristics of the oxygen carrier. As a result, it was confirmed that all three kinds of oxygen carrier were suitable for use in chemical roofing combustion system, and the best particle was determined to be N016-R4.

Effect of Oxygen Transfer Rate and Dissolved Oxygen on the Production of PHBV by Azoto-bacter vinelandii UWD. (산소전달 속도와 용존산소가 Azotobacter vinelandii UWD의 생분해성 고분자(PHBV) 생산에 미치는 영향)

  • 박창호
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.529-536
    • /
    • 1998
  • In a 20 L fermentor experiments the level of dissolved oxygen (D.O.) strongly affected growth and PHBV production of Azotobacter vinelandii UWD. A higher D.O. (5%) increased specific cell growth rate two folds but PHBV production was 17 folds higher (62.3 wt%) at a lower D.O.(1%) level. D.O. level was not a good criterion to evaluate the effect of aeration on fermentation characteristics of A. vinelandii UWD. This strain maintained an equal D.O. (5%) by decreasing its oxygen consumption rate when oxygen transfer rate (OTR) was decreased by changing agitation speed at a fixed aeration rate. OTR rather than D.O. was a criterion to explain the effect of aeration on the cell growth and PHBV production. At 5% D.O. with a lower 0TR cell growth rate decreased but PHBV production (57.3 wt%) approached to that (62.3 wt%) of the lower (1%) D.O.

  • PDF

Oxygen Transfer and Hydraulic Characteristics in Bubble Column Bioreactor Applied Fine Bubble Air Diffusing System (미세기포 산기장치를 적용한 타워형 생물반응기의 산소전달 및 수력학적 특성)

  • Lee, Seung-Jin;Ko, Kyeong-Han;Ko, Myeong-Han;Yang, Jae-Kyeong;Kim, Yong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.772-779
    • /
    • 2012
  • For improving performance of conical air diffuser generating fine bubble, both experimental and numerical simulation method were used. After adapting diffusers inner real scale bubble column, suitable for various diffuser submergence, the effect of diffuser submergence on oxygen transfer performance such as Oxygen Transfer Coefficient ($K_{L}a_{20}$) and Standard Oxygen Transfer Efficiency (SOTE) was investigated empirically. As flow patterns for various diffuser number and submergence were revealed throughout hydrodynamic simulation for 2-phase fluid flow of air-water, the cause of the change for oxygen transfer performance was cleared up. As results of experimental performance, $K_{L}a_{20}$ was increased slightly by 7% and SOTE was increased drastically by 39~72%, 5.6% per meter. As results of numerical analysis, air volume fraction, air and water velocity in bioreactor were increased with analogous flow tendency by increasing diffuser number. As diffuser submergence increased, air volume fraction, air and water velocity were decreased slightly. Because circulative co-flow is determinant factor for bubble diffusion and rising velocity, excessive circulation intensity can result to worsen oxygen transfer by shortening bubble retention time and amount.

Study on the Standard Oxygen Transfer Efficiency Monitoring System in the Aeration Tank for Reuse and Discharge of Wastewater (하폐수의 재사용 및 방류를 위한 폭기조 내 표준산소전달 효율 모니터링 시스템에 관한 연구)

  • Kim, Hong-Seok;Kim, Yong-Beom;Ko, Kyung-Han;Kim, Sang-Woo;Shim, Hwan-bo
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.73-78
    • /
    • 2019
  • In this investigation, off-gas generated from the activated sludge in wastewater treatment plant was monitored. Through monitoring, the oxygen transfer efficiency in the aeration system and the reliability was evaluated by comparing to clean water. First, the dissolved oxygen, oxygen transfer coefficient, and standard oxygen transfer efficiency were measured based on clean water, and the values were 8.60 mg/L, 9.490/hr and 23.96%, respectively. The off-gas monitoring at the wastewater treatment plant indicated that the standard oxygen transfer efficiency was 22.81%. Little difference in oxygen transfer efficiency this data inferred that the performance was improved through diffuser installation in the field monitoring system.

Gas Transfer and Hemolysis Characteristics of a New Type Intravenous Lung Assist Device (혈관 내 신형 폐보조장치의 기체전달 및 용혈 특성)

  • 김기범;권대규;정경락;이삼철
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.121-126
    • /
    • 2003
  • The purpose of this work was to assess and quantify whether the beneficial effects in long-term gas exchange at exciting frequency were obtained at different frequencies as well and then to develop a vibrating intravascular lung assist device(VIVLAD), for Patients suffering from acute respiratory distress syndrome(ARDS) or chronic respiratory problems. We investigate the optimal condition of the frequency band excited with new vibrator at state of limit hemolysis when blood hemolysis came to through a membrane vibration action. The experimental design and procedures were given for a device used to assess the effectiveness of membrane vibrations. Quantitative experimental measurements were performed to evaluate the performance of the device . and to identify membrane vibration dependence on blood hemolysis. We developed an analytical solution for the hydrodynamics of flow through a bundle of sinusoidally vibrated hollow fibers that is used to provide some insight into how wall vibrations might enhance the performance of the VIVLAD. In the result, it was measured that the effect of various excited frequencies in gas transfer rate and hemolysis from the maximum gas transfer rate at no vibration when the maximum gas transfer rates showed at module type 6, module type 6 consisted of 675 hollow fiber membranes The maximum oxygen transfer rate was caused by the occurrence of maximum amplitude and transfer of vibration to hollow fiber membranes when it was excited by the frequency band of 7Hz at each blood flow rate. because this frequency became the End mode resonance frequency of the flexible in blood flow. Also, when module type 6 was excited at an excited frequency of 7Hz. blood hemolysis was low. Therefore, we decided that the limit of hemolysis frequency is 7Hz . because maximum amplitude occurred at this frequency.