• Title/Summary/Keyword: 산소흡수제

Search Result 54, Processing Time 0.041 seconds

Use-friendly Active Packaging of Powdered Infant Formula in Single-serve Portion Augmented with Anti-oxidative Function (산화억제 가능성과 사용편의성을 가진 일회성 조제분유 포장)

  • Lee, Hye Lim;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.95-99
    • /
    • 2019
  • In the modified atmosphere packaging of powdered infant formula, the oxygen inside the package may cause its quality deterioration and needs to be minimized for quality preservation. A way of oxygen scavenger inclusion in the single-serve package without contacting the product was devised for removing oxygen residing initially and permeating through the seal layer during the storage. A polyethylene/pulp multi-layer porous filter bag of 5 × 7 cm containing 13 g of powdered infant formula was packaged in an 8 × 9 cm size aluminium laminated film package with a Fe-based oxygen scavenger of 1.8 g. After nitrogen flushed packaging, the active packages were stored at 30℃ for 254 days with periodical quality measurement. The active package could remove the initial residual oxygen of 1.4% completely and maintain absence of oxygen for the whole storage, which contributed to reduced oxidation observed in lower product peroxide value compared to that of the product in the control package. There was no influence of packaging treatment on content of 5-hydroxymethylfurfural, reaction product of initial nonenzymatic browning. The devised oxygen-scavenging single-serve package showed a potential to improve the preservation of infant formula powder and extend the shelf life.

The Effect of Oxygen Absorbent on Aged Characteristics of Hanji during Biological Artificial Aging by Aspergillus versicolor and Penicillium polonicum (산소흡수제 처리가 Aspergillus versicolor와 Penicillium polonicum에 의한 한지의 생물열화 특성에 미치는 효과)

  • Jeong, Hye Young;Choi, Kyoung-Hwa;Park, Ji Hee;Seo, Jin Ho
    • 보존과학연구
    • /
    • s.32
    • /
    • pp.137-153
    • /
    • 2011
  • Paper cultural heritages in museums and libraries are deteriorated by many biological factors like as fungi, insects, bacteria and rodents and get irreversibly damaged. Especially, paper components like as cellulose, hemicellulose, lignin, pectins, tannins, proteins and mineral additives are good nourishment for microorganism. Through some studies on fungi causing the aging of paper materials, Aspergilli (about 30%) and Penicilli (more than 30%) are the most common among 300 different kinds of microorganism that caused the biological aging of paper cultural heritages in museums and libraries. At present, various treatments are attempted to control the biodeterioration by these fungi. Especially, it is focused on the control of environmental factors such as humidity, temperature and oxygen. In this study, the oxygen absorbent was used to control oxygen, one of the these favorable conditions during the biological aging of Hanji by Aspergillus versicolor and Penicillium polonicum and then the effect on prevention in aging by this treatment was investigated. In result, the oxygen absorbent treatment had the good effect on prevention in aging during the biological aging by two species of fungi.

  • PDF

Effect of Natural Products on Skin Cells -Action and Suppression of Reactive Oxygen Species- (천연물의 피부세포에 미치는 영향 - 활성산소의 작용과 억제 -)

  • 박수남
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.2
    • /
    • pp.77-127
    • /
    • 1999
  • 활성 산소종은 노화, 특히 피부노화의 원인 물질로 작용하고 있다. 피부는 자외선에 노출되어 있어 활성 산소종을 만드는 광화학적 반응들이 계속해서 일어나고 있다. 이들 활성 산소종들은 피부 세포 및 조직 손상을 주도한다. 이들은 항산화 효소와 비효소적 항산화제들로 구성된 항산화 방어망을 파괴함으로써 산화제/항산화제 균형을 산화 상태 쪽으로 기울게 한다. 결과적으로 계속된 산화적 스트레스는 지질 과산화, 단백질 산화, 간질 성분을 파괴시키는 단백질분해효소의 활성화, 탄력 섬유인 콜라겐과 엘라스틴의 사슬절단 및 비정상적인 교차결합, 히아루론산 사슬의 절단, 멜라닌 생성반웅 촉진, DNA 산화와 같은 생체 구성 성분들의 손상을 야기시킨다. 결국에는 탄력감수 주름살 및 기미.주근깨 둥으로 특징 지워지는 피부노화가 가속화된다. 따라서 피부노화 방지를 위해서는, 과잉의 활성 산소종 생성을 억제하고 또한 생성된 활성산소를 효율적으로 제거할 수 있는 시스템이 화장품의 처방에 반드시 포함될 필요가 있다. 즉, 산화제/항산화제 밸런스가 유지되는 피부의 항산화 방어 시스템 구축이 필요하다. 피부노화 방지에 있어서 천연물의 역할로 (1) 자외선 흡수제로서의 역할, (2) 항산화제로서의 역할, (3) 주름 개선제로서의 역할, (4) 미백제로서의 역할, (5) 항균\ulcorner항염작용 및면역 조절제로서의 역할에 대하여 살펴 보았다. 21세기는 본격적으로 기능성 화장품 시대가 개막될 것으로 예측하고 있다. 이에 맞춰 천연물들은 피부노화를 방지하는데 주도적인 역할을 할 것으로 기대된다.

  • PDF

Reaction Characteristics of Desulfurization Sorbents for Warm Syngas Cleanup (석탄 합성가스 정제용 탈황제의 흡수/재생 온도 변화에 따른 황흡수 특성)

  • Baek, Jeom-In;Ryu, Jungho;Lee, Joong Beom;Eom, Tae-Hyoung;Lee, Kisun;Wi, Yong-Ho;Ryu, Chong Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.107.1-107.1
    • /
    • 2010
  • 고체 흡수제를 이용한 석탄합성가스 중의 황제거 기술은 습식 스크러빙 방식에 비해 고온에서 운전가능하므로 석탄가스화복합발전의 효율 향상을 가져올 수 있다. 고체탈황제는 서로 연결된 두 개의 유동층 반응기를 순환하면서 흡수탑에서는 합성가스 중의 $H_2S$로부터 황을 흡수하고 재생탑에서는 공기 중의 산소와 흡수된 황이 반응하여 $SO_2$를 배출하고 재생된다. 따라서 고체 황 흡수제는 유동층 공정에 응용가능한 물성과 함께 높은 황흡수능과 빠른 반응성이 요구된다. 본 연구에서는 기존 개발된 고체 탈황제가 가졌던 소성시 수축 현상, 낮은 내마모도 등을 개선하기 위해 지지체 조성을 변경하여 개발한 분무성형 탈황제의 흡수 재생 온도에 따른 황흡수 특성 변화를 조사하였다. $H_2S$ 1 vol. %를 함유한 모사 합성가스를 이용하여 흡수온도 450, $500^{\circ}C$, 재생온도 500, 550, 600, $650^{\circ}C$에서 황 흡수능을 열중량분석기를 이용하여 측정하였다. 개발된 흡수제는 유동층 공정 적용에 적합한 훌륭한 물성(형상, 밀도, 강도 등)과 함께 $500^{\circ}C$ 흡수와 $650^{\circ}C$ 재생을 기준으로 10 wt% 이상의 높은 황흡수능을 보여주었다. 흡수온도 변화는 황 흡수능 변화에 큰 영향을 미치지 않았으나, 재생온도가 $600^{\circ}C$ 이하인 경우 황흡수능이 5 wt% 이하로 크게 떨어져 재생온도를 $650^{\circ}C$ 이상 유지시키는 것이 중요함을 알 수 있었다.

  • PDF

Effect of Active Master Packaging System on Preservation of Fresh Shiitake Mushrooms in Supply Chain (유통과정에서 생표고버섯에 대한 Active 마스터 포장 시스템의 적용 효과)

  • An, Duck Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.3
    • /
    • pp.402-408
    • /
    • 2016
  • Master packaging system consists of an inner individual package and secondary outer package. During the stages of chilled transport and distribution, the combination of primary individual package and secondary package was used to maintain a modified atmosphere for shiitake mushrooms. During the retail stage at higher temperature ($25^{\circ}C$), the primary individual package was exposed to display conditions after dismantling of the secondary packaging. The master packaging system was constructed to contain eight individual $30-{\mu}m$ thick polypropylene film bags of 500 g shiitake mushrooms inside a $40-{\mu}m$ low-density polyethylene bag. Carbon dioxide absorbent material [$Ca(OH)_2$] and/or moisture absorbent (superabsorbent polymer) were designed in their required amounts based on respiration characteristics and then applied to the outer secondary packaging in sachet form. Gas concentration of the packaging, temperature, and humidity were monitored throughout transport and storage. The quality of shiitake mushrooms was measured at the retail stage to determine the packaging effect. During the distribution stage of 108 h, $O_2$ and $CO_2$ concentrations in the master packaging system were maintained at 9~11% and 1~4% in the inner packaging, respectively, which are good for quality preservation. Compared to the control, the master packaging with $CO_2$ and/or moisture absorbents improved mushroom preservation and particularly reduced decay.

A Study on the Mechanism of Calcium Binding Inhibition of Cardiac Sarcoplasmic Reticulum by Oxygen Free Radicals (산소대사물에 의한 심장근 Sarcoplasmic reticulum의 칼슘운반 억제 기전에 관한연구)

  • Kim, Hae-Won;Chung, Myung-Hee;Kim, Myung-Suk;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.79-89
    • /
    • 1985
  • Mechanism of calcium transport inhibition of cardiac sarcoplasmic reticulum (SR) by oxygen free radicals was examined. Effects of oxygen free radicals generated by xanthine/xanthine oxidase (X/XO) system on isolated porcine ventricle SR were studied with respect to its calcium binding, lipid peroxidation, SH-group content and alteration of membrane protein components. The results are as follows. 1) Calcium binding of isolated SR was markedly inhibited by X/XO. 2) During the incubation of sarcoplasmic reticulum with xanthine/xanthine oxidase, there were marked inclose in lipid peroxidation and reduction of SH-group content. 3) An antioxidant, p-phenylenediamine effectively prevented the lipid peroxidation but partially prevented the calcium binding inhibition of X/XO treated SR. 4) The reduction of SH-group content of SR treated with X/XO was partially prevented by p-phenylendiamine. 5) When modifying SH-group of SR by treatment with DTNB, the inhibition of calcium binding activity was partially prevented. 6) On gel-permeation chromatography of X/XO-treated sarcoplasmic reticulum, there was an increase of small molecular weight products, probably protein degradation products. 7) Semicarbazide, which prevents the cross-linking reaction of protein components, did not affect the calcium binding inhibition of X/XO-treated SR. From these results, it is suggested that the inhibition of calcium binding of SR by oxygen free radicals results from the consequence of multiple changes of SR components, which are lipid peroxidation, SH-group oxidation and degradation of protein components.

  • PDF

Degradation Characteristics of Carbon Dioxide Absorbents with Different Chemical Structures (상이한 화학적 구조를 가진 이산화탄소 흡수제의 열화특성)

  • Kim, Jun-Han;Lee, Ji-Hyun;Jang, Kyung-Ryong;Shim, Jae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.883-892
    • /
    • 2009
  • We evaluated the degradation properties of various alkanolamine absorbents (MEA, AMP, DEA, and MDEA) having different chemical structures for $CO_2$ capture. The degradation of $CO_2$ absorbent in general was known to be caused by oxygen which is in flue gas and by heat source, respectively. To analyze the effect of $CO_2$ and $O_2$ on degree of degradation, we conducted a variety of experiments at $30^{\circ}C$ and $60^{\circ}C$ (oxidative degradation) and $130^{\circ}C$ and $150^{\circ}C$ (thermal degradation), respectively. DEA showed the worst property for oxidative degradation in the presence of oxygen among the alkanolamine absorbents. In the case of thermal degradation, the degradation of absorbent was occurred for most of absorbents at $150^{\circ}C$. Among these absorbents, MEA and DEA gave the worst results. As a result, AMP which is a primary amine and having a steric hindrance showed the best result through the degradation test. But, the degradation of absorbent proceeded easily in the case of DEA which is a secondary amine and having 2 OH groups in terminal position. Consequently, we have evaluated the degree of degradation of various absorbents having different chemical structures to give the basic data for the development of alkanolamine absorbent.

Recent Trends in Photodynamic Therapy Using Upconversion Nanoparticles (업컨버전 나노입자를 이용한 광역학치료 연구 동향)

  • Im, Se Jin;Lee, Song Yeul;Park, Yong Il
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.138-146
    • /
    • 2018
  • Photodynamic therapy (PDT) is a great potential approach for the localized tumor removal with fewer metastatic potentials and side effects in treating the disease. In the treatment process, a photosensitizer (PS) that absorbs a light energy to generate reactive oxygen is essential. In general, a visible light is used as a light source of PDT, so that side effects from the light source are inevitable. For this reason, upconversion nanoparticles (UCNPs) using near-infrared (NIR) as an excitation source are attracting attention in the field of disease diagnosis and treatment. UCNPs have the low cytotoxicity and phototoxicity, and also advantages such as deep tissue penetration and low background autofluorescence. For PDT, UCNPs should be combined with a PS which absorbs the light energy from UCNPs and transfers it to the surrounding oxygen to produce reactive oxygen. In addition, the therapeutic efficacy can be improved by modifying nanoparticle surfaces, adding anti-cancer drugs, or combining with photothermal therapy (PTT). In this review, we summarize the recent research to improve the efficiency of PDT using UCNPs.

Degradation of Aqueous Monoethanolamine Absorbent (모노에탄올아민 흡수제의 열화특성 분석)

  • Cho, Youngmin;Nam, Sung-Chan;Yoon, Yeo-Il;Moon, Sungjun;Baek, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.195-199
    • /
    • 2010
  • The reversible chemical absorption using MEA (monoethanolamine), one of alkanolamine, is generally used as a conventionally method for $CO_{2}$ capture. Even MEA absorbent has excellent reactivity with $CO_{2}$, it has been known to have the decrease of absorption capacity caused by $CO_{2}$, $O_{2}$ or other acid gases in flue gas, corrosion and thermal degradation. In this study, MEA solutions degraded in the steam reforming process of refinery used and the absorption performance were compared for the used of conventional MEA solution. In case of 30 wt% MEA and mixture of 20 wt% thermal degraded absorbent (DP) and 10 wt% PZ, the absorption capacities were $0.5365mol-CO_{2}$/mol-absorbent and $0.5939mol-CO_{2}$/mol-absorbent respectively. PZ added thermally degraded absorbent showed the enhanced absorption capacity. On the contrary, the absorption rates were $1.1610kg_{f}/cm^2{\cdot}min$ for 30 wt% MEA, $0.5310kg_{f}/cm^2{\cdot}min$ for mixture of 20 wt% thermal degraded absorbent (DP) and 10 wt% PZ and $0.3525kg_{f}/cm^2{\cdot}min$ for 30 wt% thermally degraded absorbent only. The absorption rates of PZ added thermally degraded absorbent was higher than that of thermally degraded absorbent only. Therefore, it can be confirmed that thermally degraded absorbent can be reused as an absorbent for $CO_{2}$ by the addition of suitable additives.