• Title/Summary/Keyword: 산림토양

Search Result 945, Processing Time 0.024 seconds

Flowering and Nut Fruit Characteristics after Soil Amendment Treatments in Chestnut (Castanea crenata S. et Z.) Orchards (토양 개량제 처리에 따른 밤나무의 개화 및 종실 형질 특성)

  • Kim, Choonsig;Cho, Hyun-Seo;Lim, Jong-Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.567-573
    • /
    • 2012
  • This study was carried out to examine the effect of soil amendment treatments [(organic fertilizer: 20 kg $tree^{-1}$; compound fertilizer+wood-char fertilizer: compound fertilizer 4 kg $tree^{-1}$+wood-char 2 kg $tree^{-1}$; lime fertilizer: 3 kg $tree^{-1}$; mixed fertilizer: compound fertilizer 1 kg $tree^{-1}$+organic fertilizer 10 kg $tree^{-1}$+wood-char 1 kg $tree^{-1}$; control (no fertilizer)] on flowering and fruit characteristics in chestnut (Castanea crenata S. et Z.) orchards in Jinju and Sancheong, Gyeongsangnam-do. Diameter of fruiting shoot increased generally after soil amendment treatments compared with the control, while number of leaf, female and male flowers were not affected by the treatments. Nut weight increased after soil amendment treatments in Jinju, but was not affected by the treatments in Sancheong. There was a positive correlation between soil pH (r=0.91) or exchangeable $Ca^{2+}$ (r=0.99) and nut weight in Jinju and a positive correlation (r=0.97) between organic carbon content and soluble solid concentration, while a negative correlation (r=-0.92) between exchangeable $Mg^{2+}$ and soluble solid concentration of nuts in Jinju. However, the nut weight and soluble solid concentration in Sancheong were not correlated with soil properties. The results indicate that the characteristics of flowering and nuts in chestnut orchards depend on soil properties after soil amendment treatments between regions which show better responses on poor sites than on good sites.

Evaluation of Air Pollution Effects in Seoul City on Forest Soil at Mt. Namsan by Assay of Denitrifying and Sulfur-Reducing Bacteria (탈질균(脫窒菌) 및 황산환원균(黃酸還元菌) 정량(定量)을 통(通)한 서울의 대기오염(大氣汚染)이 남산(南山)의 토양(土壤)에 미치는 영향(影響) 평가(評價))

  • Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.98-104
    • /
    • 1997
  • Soil pollution intensity at Mt. Namsan in Seoul city which was expected to show significant soil contamination due to long-term air pollution was evaluated by comparing soil chemical properties at Mt. Kyebangsan in Hongcheon area as a control, and the bacteria participating in nitrogen or sulfur mineralization were assayed simultaneously in order to evaluate the validity of N and/or S mineralization bacteria as an index of soil contamination. The soil of Mt. Namsan showed 10 times higher concentration of hydrogen ion compared to that of Mt. Kyebangsan, which indicated that the soil had relatively been acidified seriously. Especially, large amount of canons were thought to be leached out from the soil, while the amount of extractable Al was getting larger and larger, which result in serious problems in soil ecosystem of the mountain. I could infer from soil chemical properties of the four study sites that the major reason of soil acidification was SOx deposition. However, the sulfur-reducing bacteria were not significantly different between the two regions, which indicated that the microbial dynamics of the soil ecosystem was not controlled by simple factor, but by multiple factors. By the way, the dynamics of bacteria participating in denitrification process was different between the two regions, which was more active at Mt. Kyebangsan than at Mt. Namsan. Thus, the microbial assay for nitrogen mineralization is desirable to be examined as a tool for evaluating soil health or microbial activity in soil ecosystem.

  • PDF

Soil Respiration in Pinus rigida and Larix leptolepis Plantations (리기다소나무와 낙엽송(落葉松) 인공조림지내(人工造林地內) 토양발생(土壤發生) 이산화탄소(二酸化炭素)에 관한 연구(硏究))

  • Son, Yowhan;Kim, Hyun-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.3
    • /
    • pp.496-505
    • /
    • 1996
  • Soil respiration was measured every two weeks from May through November 1995 using the soda lime method in 40-Year-old Pinus rigida and Larix leptolepis plantations on a similar soil in Yangpyeong, Kyonggi Province. Treatments included control and no-roots(plots trenched and root regrowth into plots prevented). Root respiration was evaluated by comparing no-roots sub-plots to control plots. Mean soil respiration showed highly significant species effects(p<0.01) and was highest at the Pinus rigida control plot($0.38g/m^2/hr$) and lowest at the Larix leptolepis no-roots plot($0.31g/m^2/hr$). High soil respiration in Pinus rigida may be related to aboveground litter production. The annual $CO_2$ fluxes ranged from 23 to 27t/ha/yr. We found significant correlations between temperatures(air : $R^2$=0.53, soil : $R^2$=0.55) and soil respiration(p<0.01), but no significant correlations between soil moisture and soil respiration(p>0.1). Root respiration was 3% of total soil respiration. We might underestimate rapt respiration because of shallow trenches and $CO_2$measurements right after trenching. Factors controlling soil respiration including belowground litterfall(especially fine roots) inputs, litter quality should be well understood to predict soil carbon fluxes and relative contributions to total soil respiration in forest ecosystems.

  • PDF

Crack Form and Soil Physical Properties in Land Creeping area on Okjong, Hadong (하동군 옥종면 땅밀림 산사태지의 인장균열 형태와 토양 물리성 변화)

  • Kim, Ki-Dae;Park, Jen-Hyeon;Lee, Chang-Woo;Kang, Min-Jeng
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.4
    • /
    • pp.435-440
    • /
    • 2016
  • This study was carried out to examine of soil physical property and crack shape by collapse process on landslide area (by land creeping) in Hadong, Gyeongnam. We investigated morphological characteristics (length, depth, cut slope) between main crack and local crack, soil physical properties change between undisturbed section and disturbed section. As a result, morphological characteristics of crack showed no significant difference main crack between local crack. In case of soil physical property variation, soil liquid phase was significantly higher at 31-40 cm of soil depth in disturbed section. And this result is likely to be due to site factors.

Antioxidant Enzyme Activities and Soil Properties of Healthy and Declining Abies koreana (Wils.) in Mt. Halla (한라산 구상나무 건전개체와 쇠약개체의 항산화효소활성 및 토양특성)

  • Lim, Jong-Hwan;Woo, Su-Young;Kwon, Mi Jeong;Kim, Young Kul
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.14-20
    • /
    • 2007
  • In order to examine the differences in antioxidant enzyme activities which represent defence mechanism to stressful environments, and soil properties between healthy and declining (or unhealthy) trees, we selected three sites, Witseorum, Youngsil and Sungpanak (Jindallebat). Antioxidant enzymes including Ascorbate peroxidase (APX) and Glutathione Reductase (GR), forest soil properties including soil texture, soil pH, organic matter, total nitrogen, available phosphate, cation exchange capacity, exchangeable cation content and nutrient contents in leaves of Abies koreana (Korean fir) trees were analyzed. There were no significant differences between healthy and declining trees in GR activity. However, seasonal difference in antioxidant enzyme activity was observed. GR activity was lower in June and August than that of September. Soil chemical and physical properties of each site showed a tendency that organic content, total nitrogen content, available phosphorus, cation exchange capacity and cation content were lower at the site of declining trees than the site of healthy trees.

Carbon Stocks in Tree Biomass and Soils of Quercus acutissima, Q. mongolica, Q. serrata, and Q. variabilis stands (상수리나무, 신갈나무, 졸참나무, 굴참나무 임분의 임목 바이오매스와 토양 탄소 저장량)

  • Lee, Sang Tae;Chung, Sang Hoon;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.365-373
    • /
    • 2022
  • We compared carbon stocks in tree biomass and soils of Quercus acutissima, Q. mongolica, Q. serrata, and Q. variabilis stands. A total of 531 plots (Q. acutissima: 110 plots, Q. mongolica: 177 plots, Q. serrata: 96 plots, Q. variabilis: 148 plots) were examined between 2016 and 2021 to determine the tree biomass and soil carbon stocks throughout the country. The carbon stocks of tree biomass were significantly higher in Q. mongolica (mean stand age, 57 years, 144.9 Mg C ha-1) than in Q. variabilis (mean stand age, 43 years, 123.7 Mg C ha-1), Q. serrata (mean stand age, 43 years, 120.1 Mg C ha-1), and Q. acutissima (mean stand age, 36 years, 113.2 Mg C ha-1) stands. The soil carbon concentration was significantly higher in Q. mongolica (A: 43.1 mg C g-1) than in Q. serrata (31.0 mg C g-1), Q. variabilis (25.31 mg C g-1), and Q. acutissima (24.4 mg C g-1) stands. The soil carbon stocks were significantly higher in Q. mongolica (116.8 Mg C ha-1) than in Q. acutissima (49.3 Mg C ha-1) stands. Total carbon stocks of tree biomass and soil were highest in Q. mongolica (262 Mg C ha-1), followed by Q. serrata (218 Mg C ha-1), Q. variabilis (211 Mg C ha-1), and Q. acutissima (163 Mg C ha-1) stands. Multiple linear regressions were performed to estimate the total carbon stocks of the four Quercus spp., and results showed that total carbon stocks increased with increasing elevation, mean diameter at breast height, and basal areas. Basal area and elevation of Quercus spp. stands were important explanatory variables based on multiple linear regressions for estimating carbon stocks.

Comparison of the Phylogenetic Diversity of Humus Forest Soil Bacterial Populations via Different Direct DNA Extyaction Methods (DNA 직접추출법에 따른 산림토양 부식층 내 세균군집의 계통학적 다양성 비교)

  • Son, Hee-Seong;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • The principal objective of this study was to analyze 16S rDNA-ARDRA of the humus forest soil via an improved manual method and an ISOIL kit on the basis of the UPGMA clustering of the 16S rDNA combined profile, 44 ARDRA clusters of 76 clones via the ISOIL kit method and 45 ARDRA clusters of 136 clones via the improved manual method. On the basis of the 16S rDNA sequences, 44 clones from the ARDRA clusters by the ISOIL kit were classified into 3 phyla : ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria and Actinobacteria. Using the improved manual method, the specimens were classified into 6 phyla : the ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes and Gemmatomonadetes. As a result, the modified manual method indicated greater phylogenetic diversity than was detected by the ISOIL kit. Approximately 40 percent of the total clones were identified as ${\alpha}-Proteobacteria$ and 30 percent of the total clones were ${\gamma}-Proteobacteria$ and assigned to dominant phylogenetic groups using the ISOIL kit. Using the modified manual method, 41 percent of the total clones were identified as Acidobacteria and 28 percent of total clones were identified as ${\alpha}-proteobacteria$ and assigned to dominant phylogenetic groups.

Ginger Cultivation Under Multipurpose Tree Species in the Hill Forest (방글라데시 경사지 산림토양의 경제적 이용을 위한 생강 재배기술 개발)

  • Aslam Ali, M.;Jamaluddin, M.;Mujibur Rahman, G.M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.218-221
    • /
    • 2005
  • The present study was investigated in the Chittagong hill forest of Bangladesh to assess the feasibility of ginger cultivation under multipurpose forest and fruit tree species. There were three treatments such as i) ginger grown under open field condition, ie. full sunlight (T1), ii) ginger grown under Gamar tree (spacing of $90{\times}90cm$ (T2) and iii) ginger grown under guava tree (spacing $180{\times}180cm$) tree (T3). The experiment was laid out in randomized block design (RBD) and each treatment was replicated three times. From data it was observed that some morphological parameters of ginger such as plant height, number of leaves per plant, leaf length and leaf breadth were higher in the treatments T2 and T3 as compared to the treatment T1. A positive and linear relationship was observed between the weight of rhizome and yield of ginger which caused the highest yield of ginger ($23.63Mg\;ha^{-1}$) under guava tree species at partial shaded condition in the T3 treatment ($180{\times}180cm$), whereas the lowest yield ($15.64Mg\;ha^{-1}$) was recorded in the T2 treatment when ginger was cultivated under Gamar tree species at closer spacing ($90{\times}90cm$). Therefore, it was revealed that partial shaded condition favoured the optimum growth and yield of ginger, whereas the dense shade from intensively planted tree species badly affected the dry matter production and yield of ginger.

Utilization Evaluation of Numerical forest Soil Map to Predict the Weather in Upland Crops (밭작물 농업기상을 위한 수치형 산림입지토양도 활용성 평가)

  • Kang, Dayoung;Hwang, Yeongeun;Yoon, Sanghoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.34-45
    • /
    • 2021
  • Weather is one of the important factors in the agricultural industry as it affects the price, production, and quality of crops. Upland crops are directly exposed to the natural environment because they are mainly grown in mountainous areas. Therefore, it is necessary to provide accurate weather for upland crops. This study examined the effectiveness of 12 forest soil factors to interpolate the weather in mountainous areas. The daily temperature and precipitation were collected by the Korea Meteorological Administration between January 2009 and December 2018. The Generalized Additive Model (GAM), Kriging, and Random Forest (RF) were considered to interpolate. For evaluating the interpolation performance, automatic weather stations were used as training data and automated synoptic observing systems were used as test data for cross-validation. Unfortunately, the forest soil factors were not significant to interpolate the weather in the mountainous areas. GAM with only geography aspects showed that it can interpolate well in terms of root mean squared error and mean absolute error. The significance of the factors was tested at the 5% significance level in GAM, and the climate zone code (CLZN_CD) and soil water code B (SIBFLR_LAR) were identified as relatively important factors. It has shown that CLZN_CD could help to interpolate the daily average and minimum daily temperature for upland crops.

Growth and Useful Component of Angelica gigas Nakai under High Temperature Stress (고온 스트레스에 따른 참당귀의 생육 및 유용성분 특성)

  • Jeong, Dae Hui;Kim, Ki Yoon;Park, Sung Hyuk;Jung, Chung Ryul;Jeon, Kwon Seok;Park, Hong Woo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.287-296
    • /
    • 2021
  • Recently, the pace of global climate change has tremendously increased, causing extreme damage to crop production. Here, we aimed to examine the growth characteristics and useful components of Angelica gigas under extreme heat stress, providing fundamental data for its efficient cultivation. Plants were exposed to various experimental temperatures (28℃, 34℃, and 40℃), and their growth characteristics and content of useful components were analyzed. At the experimental site, the ambient and soil temperature were 19.38℃ and 21.34℃, ambient and soil humidity were 81.3 % and 0.18 m3/m3, solar radiation was 162.05 W/m2. Moreover, the soil was sandy-clay-loam (pH 6.65), with 2.66% organic matter, 868.52 mg/kg soil available phosphate, and 0.14% nitrogen. Values of most growth characteristics, including the survival rate (85%), plant height (38.66cm), and fresh and dry weight (41.3 g and 14.24 g), were the highest at 28℃. Although the highest content of useful components was observed at 34℃ (3.24%), there were no significant differences across temperatures. Growth characteristics varied across temperatures due to detrimental effects of heat stress, such as accelerated tissue aging, reduced photosynthesis, and delay of growth. Similar content of useful components across temperatures may be due to poor accumulation of anabolic products caused by impaired growth at extremely high temperatures.